Механизм возникновения землетрясения. Землетрясения. Что делать при землетрясениях

Реферат на тему: Землетрясения

  • Введение
  • Механизм возникновения землетрясения
  • Изучение землетрясений
  • Типы экологических последствий от землетрясений
  • Заключение
  • Библиография

Введение

Землетрясения – это одни из самых страшных природных катастроф, вызывающих не только опустошительные разрушения, но и уносящие десятки и сотни тысяч человеческих жизней. Землетрясения всегда вызывали ужас своей силой, непредсказуемостью, последствиями. Человек в таких случаях чувствует себя отданным во власть «гнева божья». Земная твердь, самое незыблемое в представлении человека, вдруг оказывается подвижной, она вздымается волнами и раскалывается глубокими ущельями.

Известно большое число катастрофических землетрясений, во время которых число жертв составило многие тысячи. В 1556г. в Китае, в провинции Шэньси, страшное землетрясение привело к гибели 830 тыс. человек, а многие сотни тысяч получили ранения. Лиссабонское землетрясение в Португалии в 1755 г. унесло более 60 тыс. человеческих жизней. Мессинское землетрясение в 1923 г. – 150 тысяч; Таншаньское в Китае в 1976 г. – 650 тысяч. Этот скорбный список можно продолжать и продолжать. В Армении 7 декабря 1888 г. в результате Спитакского землетрясения погибло более 25 тыс. человек и 250 тыс. было ранено. 28 мая 1995 г. на Севере Сахалина мощным землетрясением был стерт с лица Земли городок Нефтегорск, где погибло более 2000 человек.

Землетрясения разной силы и в разных точках земного шара происходят постоянно, приводя к огромному материальному ущербу и жертвам среди населения. Поэтому ученые разных стран не оставляют попыток определить природу землетрясения, выявить его причины и, самое главное, научиться его предсказывать, что, к сожалению, за исключением единичных случаев пока не удается.

1. Механизм возникновения землетрясения

Землетрясение тектонического типа, т.е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов, со вспарываением каждого из них не только с высвобождением, но и перераспределением энергии в некотором объеме. Когда мы говорим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока и прочность породного массива, включающего помимо материала горных пород еще и структурные ослабленные зоны. Благодаря последним, прочность породного массива существенно ниже, чем прочность собственно пород.

Скорость распространения разрывов составляет несколько км/сек и этот процесс разрушения охватывает некоторый объем пород, носящий название очага землетрясения. Гипоцентром называется центр очага, условно точечный источник короткопериодных колебаний.

Физико-химические процессы, происходящие вну­три Земли, вызывают изменения физического со­стояния Земли, объема и других свойств вещества. Это приводит к накапливанию упругих напряже­ний в какой-либо области земного шара. Когда уп­ругие напряжения превысят предел прочности ве­щества, произойдет разрыв и перемещение больших масс земли, которое будет сопровождаться сотрясе­ниями большой силы. Вот это и вызывает сотрясе­ние Земли - землетрясение.

Землетрясением так же обычно называют любое колебание земной поверхности и недр, какими бы причинами оно не вызывалось – эндогенными или антропогенными и какова бы ни была его интенсивность.

Землетрясения происходят на Земле не повсеме­стно. Они концентрируются в сравнительно узких поясах, приуроченных в основном к высоким горам или глубоким океаническим желобам. Первый из них - Тихоокеанский - обрамляет Тихий океан; второй - Средиземнотрансазиатский - простирает­ся от середины Атлантического океана через бас­сейн Средиземного моря, Гималаи, Восточную Азию вплоть до Тихого океана; наконец, Атланто-арктический пояс захватывает срединный Атлан­тический подводный хребет, Исландию, остров Ян-Майен и подводный хребет Ломоносова в Арктике и т. д.

Землетрясения происходят также в зоне афри­канских и азиатских впадин, таких, как Красное море, озера Танганьика и Ньяса в Африке, Иссык-Куль и Байкал в Азии.

Дело в том, что высочайшие горы или глубокие океанические желоба в геологическом масштабе яв­ляются молодыми образованьями, находящимися в процессе формирования. Земная кора в таких областях подвижна. Подавляющая часть землетрясений связана с процессами горообразования. Такие зем­летрясения называют тектоническими. Ученые со­ставили специальную карту, на которой показано, какой силы землетрясения бывают или могут быть в разных районах нашей страны: в Карпатах, в Крыму, на Кавказе и в Закавказье, в горах Пами­ра, Копет-Дага, Тянь-Шаня, Западной и Восточной Сибири, Прибайкалье, на Камчатке, Курильских островах и в Арктике.

Бывают еще и вулканические землетрясения. Лава и раскаленные газы, бурлящие в недрах вул­канов, давят на верхние слои Земли, как пары ки­пящей воды на крышку чайника. Вулканические землетрясения довольно слабы, но продолжаются долго: недели и даже месяцы. Замечены случаи, когда они возникают до извержения вулканов и служат предвестниками катастрофы.

Сотрясения земли могут быть также вызваны об­валами и большими оползнями. Это местные об­вальные землетрясения.

Как правило, сильные землетрясения сопровож­даются повторными толчками, мощность которых постепенно уменьшается.

При тектонических землетрясениях происходят разрывы или перемещения горных пород в каком-нибудь месте в глубине Земли, называемом очагом землетрясения или гипоцентром. Глубина его обычно достигает нескольких десятков километров, а в отдельных случаях и сотен километров. Уча­сток Земли, расположенный над очагом, где сила подземных толчков достигает наибольшей величи­ны, называется эпицентром.

Иногда нарушения в земной коре - трещины, сбросы - достигают поверхности Земли. В таких случаях мосты, дороги, сооружения оказываются разорванными и разрушенными. При землетрясении в Калифорнии в 1906 г. образовалась трещина про­тяженностью в 450 км. Участки дороги около тре­щины сместились на 5-6 м. Во время Гобийского землетрясения (Монголия) 4 декабря 1957 г. воз­никли трещины общей протяженностью 250 км. Вдоль них образовались уступы до 10 м. Бывает, что после землетрясения большие участки земли опу­скаются и заливаются водой, а в местах, где уступы пересекают реки, появляются водопады.

Как же часто на Земле происходят землетрясе­ния? Современные точные приборы фиксируют ежегодно более 100 тыс. землетрясений. Но люди ощущают около 10 тыс. землетрясений. Из них примерно 100 бывают разрушительными.

Сила сотрясения, или сила проявления землетря­сения на земной поверхности, определяется балла­ми. Наиболее распространенной является 12-балль­ная шкала. Переход от неразрушительных к разру­шительным сотрясениям соответствует 7 баллам.

Сила проявления землетрясения на поверхности Земли в большей степени зависит от глубины оча­га: чем ближе очаг к поверхности Земли, тем сила землетрясения в эпицентре больше. Разруше­ние на поверхности Земли зависит помимо энергии, выделившейся при землетрясении и глубины очага, еще и от качества грунтов. Наибольшие разрушения происходят на рыхлых, сырых и неустойчивых грунтах. Имеет значение и качество наземных по­строек.

2. Изучение землетрясений

Информация, полученная при регистрации земле­трясений, очень важна для науки, она дает сведе­ния как об очаге землетрясения, так и о строении земной коры в отдельных областях и Земли в це­лом. Примерно через 20 мин после сильного земле­трясения о нем узнают сейсмологи всего земного шара. Для этого не нужно ни радио, ни телеграфа.

Как это происходит? При землетрясении переме­щаются, колеблются частицы горных пород. Они толкают, колеблют соседние частицы, которые передают колебания еще дальше в виде упругой волны.

Таким образом, сотрясение как бы передается по цепочке и расходится в виде упругих волн во все стороны. Постепенно, по мере удаления от очага землетрясения, волна ослабевает.

Известно, например, что упругие волны переда­ются по рельсам далеко вперед от мчащегося поез­да, наполняя их ровным, чуть слышным гулом. Упругие волны, которые возникают при землетрясе­нии, называются сейсмическими. Они регистрируются сейсмографами на сейсмических станциях всего земного шара. Сейсмические волны, идущие от очага землетрясения к сейсмическим станциям, проходят через толщи Земли, которые недоступны для прямого наблюдения. Характеристики зареги­стрированных сейсмических волн - время их появ­ления, амплитуда, период колебаний и другие па­раметры - позволяют определять положение эпи­центра землетрясения, его магнитуду, возможную силу в баллах. Сейсмические волны несут и инфор­мацию о строении Земли. Расшифровать сейсмо­грамму - все равно что прочитать рассказ сейсмиче­ских волн о том, что они встретили в глубине Зем­ли. Это сложная, но увлекательная задача. При землетрясении вдоль поверхности Земли, как и вдоль океанов, распространяются очень длинные поверхностные сейсмические волны с периодами от нескольких секунд до нескольких минут. Эти вол­ны по нескольку раз обегают вокруг Земли. Рас­пространяясь от эпицентра навстречу друг другу, они заставляют колебаться весь земной шар в це­лом. Земной шар начинает «звучать», как гигант­ский колокол, когда по нему ударят, и таким уда­ром для Земли служит сильное землетрясение. В последние годы установлено, что основной тон такого «звучания (колебания) имеет период около одного часа и регистрируется особо чувствительной аппаратурой. Эти данные путем сложных расчетов на электронно-вычислительной машине позволяют делать выводы о физических свойствах нашей планеты, определять строение оболочки или мантии Земли на глубине в сотни километров.

В особом приборе - сейсмографе, отмечающем землетрясения, используется свойство инерции. Главная часть сейсмографа - маятник - представ­ляет собой груз, подвешенный на пружине к штати­ву. Когда почва колеблется, маятник сейсмографа отстает от ее движения. Если к маятнику прикрепить иглу и к ней прижать закопченное стекло так, чтобы игла лишь соприкасалась с его поверхностью, получится наиболее простой сейсмограф, которым пользовались раньше. Почва, а вместе с ней штатив и стеклянная пластинка колеблются, маятник и игла вследствие инерции остаются неподвижными. На закопченной поверхности игла прочертит кри­вую колебания поверхности Земли в данной точке.

Если вместо иглы к маятнику прикрепить зерка­ло и направить на него луч света, то отраженный луч - «зайчик» - будет воспроизводить колебания почвы в увеличенном виде. Такой «зайчик» направ­ляют на равномерно движущуюся ленту фотобума­ги; после проявления на этой ленте можно видеть записанные колебания - кривую колебаний Земли во времени - сейсмограмму.

Интенсивность или сила землетрясений характеризуется как в баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK – 64, составленная С.В.Медведевым, В. Шпонхойером и В. Карником.

Согласно этой шкале, принята следующая градация интенсивности или силы землетрясений:

1 –3 балла – слабые;

4 – 5 баллов – ощутимые;

6 – 7 баллов – сильные (разрушаются ветхие постройки);

8 – разрушительное (частично разрушаются прочные здания, заводские трубы);

9 – опустошительное (разрушаются большинство зданий);

10 – уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и оползни)

11 – катастрофические (разрушаются все постройки, происходит изменение ландшафта);

12 – губительные катастрофы (полное разрушение, изменение рельефа местности на обширной площади).

Сейсмологи во всем мире пользуются одинаковыми определениями в сейсмологии:

а) сейсмическая опасность – возможность (вероятность) сейсмических воздействий определённой силы на поверхности земли (в баллах шкалы сейсмической интенсивности, амплитудах колебаний или ускорениях) на заданной площади в течение рассматриваемого интервала времени;

б) сейсмический риск – рассчитанная вероятность социального и экономического ущерба от землетрясений на заданной территории в заданный интервал времени.

Новый шаг в мировой сейсмологии сделал еще в 1902 г. академик Б. Б. Голицын, который предло­жил способ преобразования механических колеба­ний сейсмографа в электрические и регистрацию их с помощью зеркальных гальванометров.

3. Типы экологических последствий от землетрясений

В широком смысле экологические последствия, следует подразделять на социальные, природные и природно-антропогенные. В каждой из групп могут быть выделены прямые и косвенные последствия.

В настоящее время мы довольно полно знаем прямые проявления (последствия) землетрясений на земной поверхности и, следовательно, их прямые воздействия на элементы социального организма, между тем как сопровождающие (предшествующие, последующие) косвенные явления на уровне микро- и даже макроаномалий процессов в литосфере и вне ее начали изучать совсем недавно.

Наиболее изучены и наглядно отражают сейсмическую опасность экономические потери в результате землетрясений. За последние десятилетия учтённые экономические потери от землетрясений возросли на порядок и достигают теперь около 200 млрд. долл. за десятилетие. Если в предшествующее десятилетие в эпицентральной зоне, например, 8-балльного землетрясения средний убыток в расчёте на одного жителя составлял 1,5 тыс. долл., то теперь он достигает 30 тыс. долл. Естественно, что с повышением балльности (и магнитуды) возрастают площади пораженных территорий, а следовательно, и ущерб.

Число жертв землетрясений на земном шаре, хотя и неравномерно распределяется по годам, в целом неуклонно, по указанным выше причинам, растёт. За последние 500 лет от землетрясений на Земле погибло 4,5млн. человек, то есть ежегодно землетрясения уносят в среднем 9 тысяч человеческих жизней. Однако в период 1947-1976гг. Средние потери составляли 28тыс. человек в год. С точки зрения экологических, как и социальных последствий, не менее важен и тот факт, что число раненых (включая тяжело раненых) обычно во много раз превышает число погибших, а число оставшихся бездомными превышает количество прямых жертв на порядок и более. Так, в зонах полного разрушения зданий (зоны 8 баллов и выше) количество жертв может составлять 1-20%, а раненых – 30-80%, обратные соотношения редки.

Социальные последствия, то есть воздействие сейсмических явлений на население, включает как прямой социальный ущерб (гибель людей, их травматизм физический или психический, потеря крова в условиях нарушения систем жизнедеятельности и т.п.), так и косвенный социальный ущерб, тяжесть которого зависит от размеров прямого и обусловлена резким, на фоне материальных потерь, изменением морально-психологической обстановки, спешным перемещением больших масс людей, нарушением социальных связей и социального статуса, сокращением трудоспособности и падением эффективности труда оставшихся в живых, частью отвлеченных от привычной индивидуальной и общественной деятельности. Сильное землетрясение, особенно в больших городах и в густонаселённых районах, неизбежно ведёт к дезорганизации жизнедеятельности на тот или иной срок. Нарушения социального поведения могут возникать даже в отсутствии самого события, а лишь в связи со слухами о землетрясении, сколь бы ни были эти ожидания нелепы и ничем не обоснованы. Применительно к последнему десятилетию такого рода примеры известны для ряда городов бывшего Советского Союза. Последствия же сейсмических катастроф, тем более в периоды общего ослабления хозяйственно-экономического состояния и политической нестабильности и долговременной социальной дезориентированности населения, могут сказываться на протяжении десятилетий.

В рамках экологических проблем среди нередко провоцируемых сильными землетрясениями, то есть вторичных, последствий следует отметить (на фоне повреждения и гибели ландшафтных и культурных памятников и нарушения среды обитания как таковой) такие, как возникновение эпидемий и эпизоотий, рост заболеваний и нарушение воспроизводства населения, сокращение пищевой базы (гибель запасов, потеря скота, вывод из строя или ухудшение качества сельскохозяйственных угодий), неблагоприятные изменения ландшафтных условий (например, оголение горных склонов, заваливание долин, гидрологические и гидрогеологические изменения), ухудшение качества атмосферного воздуха из-за туч поднятой пыли и появления аэрозольных частиц в результате возникающих при землетрясении пожаров, снижение качества воды, а также качества и емкости рекреационно-оздоровительных ресурсов.

Воздействие сильных землетрясений на природную среду (геологическую среду, ландшафтную оболочку) может быть весьма разнообразным и значительным, хотя в большинстве случаев ареал (зона) изменений не превышает 100-200км.

Среди прямых, наиболее выразительных и значимых воздействий выделим следующие: геологические, гидрологические и гидрогеологические, геофизические, геохимические, атмосферные, биологические..

Природно-техногенные последствия землетрясений сказываются на природной среде охваченного землетрясением района в результате нарушения (разрушения) искусственно созданных сооружения (объектов). Сюда можно отнести, в первую очередь, следующие:

  1. Пожары на объектах антропогенной среды, ведущие к экологическим последствиям.
  2. Прорыв водохранилищ с образованием водяного вала ниже плотин.
  3. Разрывы нефте-, газо- и водопроводов, разлитие нефтепродуктов, утечка газа и воды.
  4. Выбросы вредных химических и радиоактивных веществ в окружающую среду, вследствие повреждения производственных объектов, коммуникаций, хранилищ.
  5. Нарушение надежности и безопасного функционирования военно-промышленных и военно-оборонительных систем, спровоцированные взрывы боеприпасов.

Приведенный выше список последствий землетрясений, скорее всего, не полон, особенно в отношении отдалённых последствий, часть которых нам еще неизвестна. Но и среди перечисленных некоторые не имеют пока достаточно определённых количественных характеристик и соответственно не могут быть оценены по степени опасности и объёму причиняемого ущерба с необходимой полнотой и надежностью.

Заключение

Около 40% территории бывшего Советского Союза с населением не менее 50 млн. человек было отнесено к сейсмически активным районам. Для России доля таких территорий ещё недавно определялось в 20%, из них 5% считались опасными в высокой степени (зоны 8-ми, и 9-ти балльных землетрясений). Эти относительно скромные цифры не должны успокаивать, ибо ряд прежних оценок оказался неточным и заниженным. С усовершенствованием и созданием новой карты сейсмического районирования России (и Северной Евразии) опасные в сейсмическом отношении зоны существенно расширились.

Но на новой карте в пределах Российской Федерации 11% территории относится к 8- и 9-балльным (при риске 10%), а для особо ответственных сооружений (при риске 1%) – до 35%. Но и на этой карте некоторые опасные зоны остались неучтенные.

Между тем результаты ряда ретроспективных исследований, показывают что даже слабые сейсмические толчки при определенном сочетании условий могут способствовать возникновению критических ситуаций. Когда речь идет об опасных химических производствах, подземных газохранилищах, ядерных объектах, экологические последствия такого рода катастроф не требуют комментариев. К тому же во весь рост встают проблемы спровоцирования (возбужденной) сейсмичности, в первую очередь в районах крупных водохранилищ, ядерных взрывов, пусков тяжелых ракет, массовой откачки флюидов и т.д.

Как малозначимые в экологическом отношении землетрясения могли рассматриваться лишь до тех пор,

— пока экологические проблемы и тень экологического кризиса не предстали во всем их объеме, в России особенно;

— пока человечество не достигло крайней степени экспансии на планете и не подошло к критическому уровню внедрения в природную среду и воздействия на неё, в том числе в сейсмогенных областях.

— пока землетрясения рассматривались как изолированные, строго локализованные во времени и пространстве одномоментные катаклизмы, не связанные с долговременными процессами в других сферах, составляющих среду обитания человека или влияющих на нее.

Ныне ситуация принципиально иная, и оставлять сейсмические и сопряженные с ними процессы вне рассмотрения с экологических позиций уже нельзя.

Землетрясения, которые приносят человечеству огромный вред, раскрывают нам свои тайны. Надо только полнее использовать информацию, которую несут сейсмические волны, изучать строение Земли и отдельных ее районов, выявлять режим работы очагов в каждой зоне и находить предвестники зем­летрясений. Необходимо строить здания с обязатель­ным учетом сейсмических особенностей районов. Та­ков путь, по которому идут сейсмологи всего мира.

На карте сейсмического районировани ука­заны зоны и возможная в них сила будущих сотря­сений. Предсказать же, когда произойдут они, уче­ные пока еще не могут. Это трудно, потому что зем­летрясения зарождаются в недоступных глубинах Земли, а силы, вызывающие их, накапливаются очень медленно. Несомненно, в будущем ученые научатся предсказывать время наступления земле­трясений. Сейчас можно только ослабить последст­вия землетрясений. Для этой цели в районах, кото­рым они угрожают, строительство ведется по спе­циально разработанным правилам. Применяются особые строительные материалы и конструкции. Возводятся устойчивые, прочные здания, рассчитан­ные на возможную балльность землетрясения в дан­ной зоне.

Библиография

  1. Болт Б.В. В глубинах Земли: о чем рассказывают землетрясения. М., 1984.
  2. Болт В.В. и др. Геологические стихии. М., Мир., 1978.
  3. Гир Дж., Шах Х. Зыбкая твердь. М., Мир, 1988.
  4. Гупта Х, Растоги Б Плотины и землетрясения. М., Мир, 1979.
  5. Короновский Н.В. Общая геология. Издательство Московского университета, 2002.
  6. Осипова В.И., Шойгу С.К.. Природные опасности России. Сейсмические опасности. М., «Крук», 2000.
  7. Соболев Г.А. Основы прогноза землетрясений. М.: Наука. 1993.

Механизм возникновения

Любое землетрясение - это мгновенное высвобождение энергии за счет образования разрыва горных пород, возникающего в некотором объеме, называемом очагом землетрясения, границы которого не могут быть определены достаточно строго и зависят от структуры и напряженно-деформированного состояния горных пород в данном конкретном месте. Деформация, происходящая скачкообразно, излучает упругие волны. Объем деформируемых пород играет важную роль, определяя силу сейсмического толчка и выделившуюся энергию.

Большие пространства земной коры или верхней мантии Земли, в которых происходят разрывы и возникают неупругие тектонические деформации, порождают сильные землетрясения: чем меньше объем очага, тем слабее сейсмические толчки. Гипоцентром, или фокусом, землетрясения называют условный центр очага на глубине. Глубина его обычно бывает не больше 100 км, но иногда доходит и до 700 километров. А эпицентром - проекцию гипоцентра на поверхность Земли. Зона сильных колебаний и значительных разрушений на поверхности при землетрясении называется плейстосейстовой областью(рис. 1.2.1.)

Рис. 1.2.1.

По глубине расположения гипоцентров землетрясения делятся на три типа:

1) мелкофокусные (0-70 км),

2) среднефокусные (70-300 км),

3) глубокофокусные (300-700 км).

Чаще всего очаги землетрясений сосредоточены в земной коре на глубине 10-30 километров. Как правило, главному подземному сейсмическому удару предшествуют локальные толчки - форшоки. Сейсмические толчки, возникающие после главного удара, называются афтершоками.Происходящие в течение значительного времени,афтершоки способствуют разрядке напряжений в очаге и возникновению новых разрывов в толще горных пород, окружающих очаг.

Рис. 1.2.2 Типы сейсмических волн: а - продольные P; б - поперечные S; в - поверхностные ЛяваL; г - поверхностные Рэлея R. Красной стрелкой показано направление распространения волны

Сейсмические волны землетрясения, возникающие из-за толчков, распространяются во все стороны от очага со скоростью до 8 километров в секунду.

Различают четыре вида сейсмических волн: P (продольные) и S (поперечные) проходят под землей, волны Лява (L) и Рэлея (R) - по поверхности (рис.1.2.2.)Все виды сейсмических волн распространяютсяочень быстро. Волны P, сотрясающие землю вверх и вниз, самые стремительные, они движутся со скоростью 5 километров в секунду. Волны S, колебания из стороны в сторону, лишь незначительно уступают в скорости продольным. Поверхностные волны медленнее, однако, именно они вызывают разрушения, когда удар приходится на город. В твердой породе эти волны распространяются так быстро, что их нельзя увидеть глазом. Однако рыхлые отложения(в уязвимых районах, например, в местах подсыпки грунта) волны Лява и Рэлея в состоянии превратить в текучие, так что можно видеть проходящие по ним, как по морю, волны. Поверхностные волны могут опрокидывать дома. И во время землетрясения 1995 года в Кобе (Япония), и в 1989 году в Сан- Франциско серьезней всего пострадали здания, построенные на насыпных грунтах.

Очаг землетрясения характеризуется интенсивностью сейсмического эффекта, выражаемого в баллах и магнитуде. В России используется 12-балльная шкала интенсивности Медведева-Шпонхойера-Карника. Согласно этой шкале, принята следующая градация интенсивности землетрясений (1.2.1.)

Таблица 1.2.1. 12-балльная шкала интенсивности

Интенсивность баллы

Общая характеристика

Основные признаки

Незаметное

Отмечается только приборами.

Очень слабое

Ощущается отдельными людьми, находящимися в здании в полном покое.

Ощущается немногими людьми в здании.

Умеренное

Ощущается многими. Заметны колебания висящих предметов.

Общий испуг, в зданиях легкие повреждения.

Паника, все выбегают из зданий. На улице некоторые люди теряют равновесие; падает штукатурка, в стенах появляются тонкие трещины, повреждаются Кирпичные дымовые трубы.

Разрушительное

Сквозные трещины в стенах, отмечается падение карнизов, дымовых труб Много раненых, отдельные жертвы.

Опустошительное

Разрушение стен, перекрытий, кровли во многих зданиях, Отдельные здания разрушаются до основания, много раненых и убитых.

Уничтожающее

Обрушение многих зданий, в грунтах образуются трещины до метра шириной. Много убитых и раненых.

Катастрофическое

Сплошные разрушения всех сооружений. Образуются трещины в грунтах со смещением по горизонтали и вертикали, оползни, обвалы, Изменение рельефа в больших размерах.

Иногда очаг землетрясения может быть и у поверхности Земли. В таких случаях, если землетрясение сильное, мосты, дороги, дома и другие сооружения оказываются разорванными и разрушенными .

Выяснение причин землетрясений и объяснение их механизма - одна из важнейших задач сейсмологии. Общая картина происходящего представляется следующей.

В очаге происходят разрывы и интенсивные неупругие деформации среды, приводящие к землетрясению. Деформации в самом очаге носят необратимый характер, а в области, внешней к очагу, являются сплошными, упругими и преимущественно обратимыми. Именно в этой области распространяются сейсмические волны. Очаг может либо выходить на поверхность, как при некоторых сильных землетрясениях, либо находиться под ней, как во всех случаях слабых землетрясений.

Путем непосредственных измерений были получены до сих пор довольно немногочисленные данные о величине подвижек и видимых на поверхности разрывов при катастрофических землетрясениях. Для слабых землетрясений непосредственные измерения невозможны. Наиболее полные измерения разрыва и подвижек на поверхности были проведены для землетрясения 1906г. в Сан-Франциско. На основании этих измерений Дж.Рейд в 1910г. выдвинул гипотезу упругой отдачи. Она явилась отправной точкой для разработки различных теорий механизма землетрясений. Основные положения теории Рейда следующие:

  • 1. Разрыв сплошности горных пород, вызывающий землетрясение, наступает в результате накопления упругих деформаций выше предела, который может выдержать горная порода. Деформации возникают при перемещении блоков земной коры друг относительно друга.
  • 2. Относительные перемещения блоков нарастают постепенно.
  • 3. Движение в момент землетрясения является только упругой отдачей: резкое смещение сторон разрыва в положение, в котором отсутствуют упругие деформации.
  • 4. Сейсмические волны возникают на поверхности разрыва - сначала на ограниченном участке, затем площадь поверхности, с которой излучаются волны, растет, но скорость ее роста не превосходит скорости распространения сейсмических волн.
  • 5. Энергия, освобожденная во время землетрясения, перед ним была энергией упругой деформации горных пород.

В результате тектонических движений в очаге возникают касательные напряжения, система которых, в свою очередь, определяет действующие в очаге скалывающие напряжения. Положение этой системы в пространстве зависит от так называемых нодальных поверхностей в поле смещений(y=0,z=0).

В настоящее время для изучения механизма землетрясений используют записи сейсмических станций, размещенных в разных точках земной поверхности, определяя по ним направление первых движений среды при появлении продольных (P) и поперечных (S) волн. Поле смещений в волнах P на больших расстояниях от источника выражается формулой

U P =-F yz yzr/(a 2 L 22 -y 2)

где F yz - сила действующая на площадке радиусом r; - плотность горных пород; a - скорость P - волны; L расстояние до пункта наблюдения.

В одной из нодальных плоскостей расположена площадка скольжения. Оси сжимающих и растягивающих напряжений перпендикулярны линии их пересечения и составляют с этими плоскостями углы в 45 о. Так что, если на основе наблюдений найдено положение в пространстве двух нодальных плоскостей продольных волн, то этим самым будут установлены положение осей главных напряжений, действующих в очаге, и два возможных положения поверхности разрыва.

Границу разрыва называют дислокацией скольжения. Здесь главную роль играют дефекты кристаллической структуры в процессе разрушения твердых тел. С лавинным нарастанием плотности дислокации связаны не только механические эффекты, но и электрические и магнитные явления, которые могут служить предвестниками землетрясений. Поэтому главный подход к решению проблемы предсказания землетрясений исследователи видят в изучении и выявлении предвестников различной природы.

В настоящее время общепринятыми являются две качественные модели подготовки землетрясений, которые объясняют возникновение предвестниковых явлений. В одной из них развитие очага землетрясения объясняется дилатансией, в основе которой лежит зависимость объемных деформаций от касательных усилий. В водонасыщенной пористой породе, как показали опыты, это явление наблюдается при напряжениях выше предела упругости. Возрастание дилатансии приводит к падению скоростей сейсмических волн и подъему земной поверхности в окрестности эпицентра. Затем в результате диффузии воды в очаговую зону происходит увеличение скоростей волн.

Согласно модели лавиноустойчивого трещинообразования явления предвестников могут быть объяснены без предположения о диффузии воды в очаговую зону. Изменение скоростей сейсмических волн можно объяснить развитием ориентированной системы трещин, которые взаимодействуют между собой и по мере роста нагрузок начинают сливаться. Процесс приобретает лавинный характер. На этой стадии материал неустойчив, происходит локализация растущих трещин в узких зонах, вне которых трещины закрываются. Эффективная жесткость среды возрастает, что приводит к увеличению скоростей сейсмических волн. Изучение явления показало, что отношение скоростей продольных и поперечных волн перед землетрясением сначала уменьшается, а затем возрастает, и эта зависимость может являться одним из предвестников землетрясений.

Ежегодно на нашей планете происходят сотни тысяч землетрясений. Большинство из них настолько малы и незначительны, что зафиксировать их способны лишь специальные датчики. Но, бывают и более серьёзные колебания: два раза в месяц земная кора содрогается достаточно сильно для того, чтобы разрушить всё вокруг.

Поскольку большинство толчков подобной силы происходят на дне Мирового океана, если их не сопровождает цунами, люди о них даже не подозревают. А вот когда содрогается суша, стихия бывает до того разрушительна, что счёт жертв идёт на тысячи, как это случилось в XVI веке в Китае (во время подземных толчков магнитудой 8,1 погибло более 830 тыс. людей).

Землетрясением называют подземные толчки и колебания земной коры, вызванные природными или искусственно созданными причинами (движением литосферных плит, извержением вулканов, взрывами). Последствия толчков большой интенсивности нередко бывают катастрофичны, по количеству жертв уступая лишь тайфунам.

К сожалению, на данный момент учёные не настолько хорошо изучили процессы, что происходят в недрах нашей планеты, а потому прогноз землетрясений дают довольной приблизительный и неточный. Среди причин возникновений землетрясений специалисты выделяют тектонические, вулканические, обвальные, искусственные и техногенные колебания земной коры.

Тектонические

Большинство зафиксированных в мире землетрясений возникло в результате движений тектонических плит, когда происходит резкое смещение горных пород. Это может быть как столкновение друг с другом, так и опускание более тонкой плиты под другую.

Хотя этот сдвиг обычно невелик, и составляет лишь несколько сантиметров, в движение приходят расположенные над эпицентром горы, которые выделяют огромной силы энергию. В результате на земной поверхности образовываются трещины, по краям которых начинают смещаться огромные участки земли вместе со всем, что на ней находится – полями, домами, людьми.

Вулканические

А вот вулканические колебания хоть и слабы, но продолжаются долго. Обычно особой опасности они не представляют, но катастрофические последствия зафиксированы всё же были. В результате мощнейшего извержения вулкана Кракатау в конце XIX ст. взрывом была уничтожена половина горы, а последующие за этим подземные толчки были такой силы, что раскололи остров на три части, погрузив две трети в пучину. Поднявшееся после этого цунами уничтожило абсолютно всех, кто сумел до этого выжить и не успел покинуть опасную территорию.



Обвальные

Нельзя не упомянуть об обвалах и больших оползнях. Обычно сотрясения эти несильны, но в некоторых случаях их последствия бывают катастрофичны. Так, произошло однажды в Перу, когда огромная лавина, вызвав землетрясение, на скорости 400 км/ч сошла с горы Аскаран, и, сровняв с землёй не одно поселение, погубила более восемнадцати тысяч человек.

Техногенные

В некоторых случаях причины и последствия землетрясений нередко связаны с человеческой деятельностью. Учёными было зафиксировано увеличение количества подземных толчков в районах крупных водохранилищ. Связано это с тем, что собранная масса воды начинает давить на ниже находящуюся земную кору, а проникающая сквозь грунт вода – разрушать её. Кроме того, увеличение сейсмической активности было замечено в местах добычи нефти и газа, а также в районе шахт и карьеров.

Искусственные

Землетрясения можно вызвать и искусственным путём. Например, после того как КНДР испытывало новое ядерное оружие, во многих местах планеты датчики зафиксировали землетрясения умеренной силы.

Подводное землетрясение возникает во время столкновения тектонических плит на океаническом дне или недалеко от побережья. Если очаг расположен неглубоко, а магнитуда равняется 7 баллам, подводное землетрясение чрезвычайно опасно, поскольку вызывает цунами. Во время содрогания морской коры одна часть дна опускается, другая – приподнимается, в результате чего вода в попытках вернуться к первоначальному положению, начинает двигаться по вертикали, порождая серию огромных волн, идущих по направлению к побережью.


Подобное землетрясение вместе с цунами нередко могут иметь катастрофические последствия. Например, одно из самых сильных моретрясений произошло несколько лет назад в Индийском океане: в результате подводных толчков поднялось большое цунами и, обрушившись на близлежащие побережья, привело к гибели более двухсот тысяч человек.

Начало толчков

Очаг землетрясения являет собой разрыв, после образования которого земная поверхность мгновенно смещается. Надо заметить, разрыв этот происходит не сразу. Сперва плиты наталкиваются друг на друга, в результате чего возникает трение и образуется энергия, которая постепенно начинает накапливаться.

Когда напряжение становится максимальным и начинает превышать силу трения, горные породы разрываются, после чего освобождённая энергия преобразуется в сейсмические волны, двигающиеся со скоростью 8 км/с и вызывающие колебания земли.


Характеристика землетрясений по глубине эпицентра делится на три группы:

  1. Нормальные – эпицентр до 70 км;
  2. Промежуточные – эпицентр до 300 км;
  3. Глубокофокусные – эпицентр на глубине, превышающей 300 км, типичны для Тихоокеанского кольца. Чем глубже эпицентр, тем дальше дойдут порождённые энергией сейсмические волны.

Характеристика

Состоит землетрясение из нескольких этапов. Основному, наиболее сильному толку, предшествуют предупреждающие колебания (форшоки), а после него начинаются афтершоки, последующие сотрясения, причём магнитуда самого сильного афтершока на 1,2 меньше, чем у основного толчка.

Период от начала форшоков до конца афтершоков вполне может длиться несколько лет, как это, например, случилось в конце XIX столетия на острове Лисса в Адриатическом море: длилось оно три года и за это время учёные зафиксировали 86 тысяч толчков.

Что касается длительности основного толчка, то она обычно непродолжительна и редко когда длится более минуты. Например, самый мощный толчок на Гаити, произошедший несколько лет назад, длился сорок секунд – и этого оказалось достаточно, чтобы превратить город Порт-о-Пренс в руины. А вот на Аляске была зафиксирована серия толчков, которые сотрясали землю около семи минут, при этом три из них привели к значительным разрушениям.


Рассчитать, какой именно толчок окажется основным и будет иметь наибольшую магнитуду, крайне сложно, проблематично и стопроцентных способов нет. Поэтому сильные землетрясения нередко застают население врасплох. Так, например, случилось в 2015 году в Непале, в стране, где настолько часто фиксировались несильные сотрясения, что люди попросту не обращали на них особого внимания. Поэтому содрогание почвы магнитудой в 7,9 балла привело к большому числу жертв, а последующие за ним через полчаса и на следующий день более слабые афтершоки с магнитудой 6,6 не улучшили ситуации.

Нередко бывает, что сильнейшие содрогания, происходящие с одной стороны планеты, сотрясают противоположную сторону. Например, землетрясение с магнитудой в 9,3, произошедшее 2004 году в Индийском океане, несколько ослабило возрастающее напряжение в разломе Сан-Андреас, что находится на стыке литосферных плит вдоль побережья Калифорнии. Оно оказалось такой силы, что немного видоизменило вид нашей планеты, сгладив её выпуклость в средней части и сделав более округлой.

Что такое магнитуда

Одним из способов замерить амплитуду колебаний и количество освобождаемой энергии является шкала магнитуд (шкала Рихтера), содержащая условные единицы от 1 до 9,5 (её очень часто путают с двенадцатибалльной шкалой интенсивности, измеряемую в баллах). Увеличение магнитуды землетрясений лишь на одну единицу означает увеличение амплитуды колебаний в десять, а энергии – в тридцать два раза.

Проведённые расчёты показали, что размер эпицентра во время слабых колебаний поверхности как в длину, так и по вертикали измеряется несколькими метрами, когда средней силы – километрами. А вот землетрясения, вызывающие катастрофы, имеют протяжённость до 1 тыс. километров и от точки разрыва уходят на глубину до пятидесяти километров. Таким образом, максимальный зарегистрированный размер эпицентра землетрясений на нашей планете составлял 1000 на 100 км.


Выглядит магнитуда землетрясений (шкала Рихтера) следующим образом:

  • 2 – слабые почти неощутимые колебания;
  • 4 — 5 – хоть толчки слабые, они могут привести к незначительным разрушениям;
  • 6 – средние разрушения;
  • 8,5 – одни из сильнейших зафиксированных землетрясений.
  • Наиболее крупным считается Великое Чилийское землетрясение с магнитудой в 9,5, породившее цунами, которое, преодолев Тихий океан, добралось до Японии, преодолев 17 тыс. километров.

Ориентируясь на магнитуду землетрясений, учёные утверждают, что из десятков тысяч, происходящих на нашей планете колебаний в год, лишь одно имеет магнитуду 8, десять – от 7 до 7,9 и сто – от 6 до 6,9. Нужно учитывать, что если магнитуда землетрясения 7, последствия могут быть катастрофичными.

Шкала интенсивности

Чтобы понять, почему происходят землетрясения, учёными была разработана шкала интенсивности, основанная на таких внешних проявлениях, как воздействие на людей, животных, здания, природу. Чем ближе эпицентр землетрясений к земной поверхности, тем больше интенсивность (эти знания дают возможность дать хотя бы приблизительный прогноз землетрясений).

Например, если магнитуда землетрясения была равна восьми, а эпицентр находился на глубине десяти километров, интенсивность землетрясения составит от одиннадцати до двенадцати баллов. А вот если эпицентр был расположен на глубине пятидесяти километров, интенсивность окажется меньшей и будет измеряться в 9-10 баллов.


Согласно шкале интенсивности, первые разрушения могут произойти уже при шестибалльных толчках, когда появляются тонкие трещины в штукатурке. Землетрясение в одиннадцать баллов считается катастрофическим (поверхность земной коры покрывается трещинами, здания разрушаются). Самые сильные землетрясения, способные значительно изменить вид местности, оцениваются в двенадцать баллов.

Что делать при землетрясениях

По приблизительным подсчётам учёных число людей, которые погибли в мире из-за землетрясений за последние полтысячелетия, превышает пять миллионов человек. Половина из них приходится на Китай: он расположен в зоне сейсмической активности, а на его территории проживает большое число людей (в XVI ст. погибло 830 тыс. человек, в середине прошлого века – 240 тысяч).

Подобные катастрофические последствия можно было предотвратить, если бы защита от землетрясений была хорошо продумана на государственном уровне, а при конструировании зданий учитывалась возможность возникновения сильных подземных толчков: большинство людей погибло именно под обломками. Нередко люди, проживающие или пребывающие в сейсмически активной зоне, не имеют ни малейшего понятия о том, как именно нужно действовать в условиях чрезвычайной ситуации и каким способом можно спасти свою жизнь.

Необходимо знать, что если подземные толчки застали вас в здании, нужно сделать всё возможное, чтобы как можно быстрее выбраться на открытое пространство, при этом лифтами пользоваться категорически нельзя.

Если уйти из здания невозможно, а землетрясение уже началось, покидать его крайне опасно, поэтому нужно встать или в дверном проёме, или в углу возле несущей стены, или залезть под крепкий стол, защитив голову мягкой подушкой от предметов, которые могут упасть сверху. После того как толчки закончатся, здание нужно покинуть.

Если во время начала землетрясений человек оказался на улице, нужно отойти от дома минимум на одну треть от его высоты и, избегая высоких зданий, оград и других построек, двигаться по направлению широких улиц или парков. Также необходимо держаться как можно дальше от оборванных электрических проводов промышленных предприятий, поскольку там могут храниться взрывоопасные материалы или ядовитые вещества.

А вот если первые подземные толчки застали человека, когда тот пребывал в автомобиле или общественном транспорте, нужно срочно покинуть транспортное средство. Если же машина находится на открытой местности, наоборот, остановить машину и переждать землетрясение.

Если же так получилось, что вас полностью завалило обломками, главное, не впадать в панику: человек может продержаться без еды и воды несколько дней и дождаться, пока его найдут. После катастрофических землетрясений работают спасатели со специально обученными собаками, а те способны учуять жизнь среди завалов и подать знак.

На поверхности Земли и в прилегающих к ней слоях атмосферы идет развитие множества сложнейших физических, физико-химических, биохимических процессов, сопровождающихся обменом и взаимной трансформацией различных видов энергии. Источником энергии являются процессы реорганизации вещества, происходящее внутри Земли, физические и химические взаимодействия ее внешних оболочек и физических полей, а также гелиофизические воздействия. Эти процессы лежат в основе эволюции Земли и её природной обстановки, являясь источником постоянных преобразований облика нашей планеты – её геодинамики.

Геодинамические и гелиофизические преобразования являются источником различных геологических и атмосферных процессов и явлений, широко развитых на земле и в прилегающих к её поверхности слоях атмосферы, создающих природную опасность для человека и окружающей среды. Наибольшее распространение имеют различные тектонические или геофизические явления: землетрясения, извержения вулканов и горные удары

Самыми опасными, труднопредсказуемыми, неуправляемыми стихийными бедствиями являются землетрясения.

Под землетрясением понимают подземные толчки и колебания земной поверхности в результате разрывов и смещений в земной коре или в верхней части мантии и передающиеся на большие расстояния в виде упругих волновых колебаний.

Землетрясение относится к внезапно возникающему и быстро распространяющемуся стихийному бедствию. За это время невозможно провести подготовительные и эвакуационные мероприятия, поэтому последствия землетрясений связаны с огромными экономическими потерями и многочисленными человеческими жертвами. Число пострадавших зависит от силы и места землетрясения, плотности населения, высотности и сейсмостойкости строений, времени суток, возможности возникновения вторичных поражающих факторов, уровня подготовки населения и специальных поисково-спасательных формирований (ПСФ).

Под действи­ем глубинных тектонических сил возникают напряжения, слои земных пород деформируются, сжимаются в складки и с наступлением крити­ческих перегрузок смещаются и рвутся, образуя разломы земной коры. Разрыв совершается мгновенным толчком или серией толчков, имеющих характер удара. При землетрясении происходит разрядка энергии, накопившейся в недрах. Энергия, выделившаяся на глубине, передается посредством упругих волн в толще земной коры и достигает поверхности Земли, где и происходят разрушения.

В мифологии разных народов наблюдается интересное сходство в причинах землетрясений. Это будто бы движение некоего реального или мифического животного, гигантского, скрытого где- то в глубинах земли. У древних индусов это слон, у народов Суматры - огромный вол, древние японцы вину за землетрясения возлагали на гигантского сома.

Научная геология (а ее становление относится к 18 веку) пришла к выводу о том, что сотрясаются главным образом молодые участки земной коры. Во второй половине 19 века появилась общая теория, согласно которой земная кора была подразделена на древние, стабильные, щиты и молодые, подвижные горные системы. И действительно, молодые горные системы Альпы, Пиренеи, Карпаты, Гималаи, Анды подвержены сильным землетрясениям, в то же время на Урале (старые горы) землетрясения отсутствуют.

Очаг или гипоцентр землетрясения - это место в земных недрах, где землетрясение зарождается. Эпицентр - место на поверхности земли, которое расположено наиболее близко к очагу. Землетрясения на земле распределяются неравномерно. Они сосредоточены в отдельных узких зонах. Некоторые эпицентры приурочены к материкам, другие к их окраинам, третьи к дну океанов. Новые данные об эволюции земной коры подтвердили, что упомянутые сейсмические зоны являются границами литосферных плит.

Литосфера - это твердая часть земной оболочки, простирающаяся до глубины 100-150 км. Она включает земную кору (мощность которой достигает 15-60 км) и часть верхней мантии, которая кору подстилает. Она разделена на плиты. Одни из них - велики (например, Тихоокеанская, Североамериканская и Евразийская), другие - меньше (Аравийская, Индийская плиты). Плиты перемещаются по пластичной подстилающей прослойке, именуемой астеносферой.

Немецкий геофизик Альфред Вегенер на пороге 20 века сделал выдающееся открытие:

восточные берега Южной Америки и Западные берега Африки можно совместить так же точно, как соответствующие части детской разрезанной картинки-головоломки. Отчего это? - задался вопросом Вегенер, - И отчего берега обоих континентов, разделенных тысячами километров, имеют сходное геологическое строение и похожие формы жизни? Ответом явилась теория "перемещения континентов", изложенная в книге "Возникновение океанов и континентов", изданной в 1912 г. Вегенер утверждал, что гранитные материки и базальтовое дно океанов не образуют сплошного покрова, а как бы плавают, подобно плотам, на вязкой расплавленной породе, приводимые в движение силой, связанной с вращением Земли. Это противоречило тогдашним официальным воззрениям.

Поверхность Земли, как тогда считалось, может быть только твердью, неизменной оболочкой над жидкой земной магмой. Когда эта оболочка остыла, она сморщилась, как засохшее яблоко, при этом возникли горы и долины. С тех пор земная кора больше не подвергалась изменениям.

Теория Вегенера, явившая поначалу сенсацией, вскоре вызвала ожесточенную критику, а потом сочувствующую и даже ироничную улыбку. На 40 лет теория Вегенера предалась забвению.

Сегодня мы знаем, что Вегенер был прав. Геологические исследования с помощью современных приборов доказали, что земная кора состоит примерно из 19 (7 малых и 12 больших) плит или платформ, постоянно изменяющих свое местонахождение на планете. Это странствующие тектонические плиты земной коры имеют толщину от 60 до 100 км и как льдины, то опускаясь, то поднимаясь, плавают на поверхности вязкой магмы. Те места, где они соприкасаются между собой (разломы, швы), и являются главными причинами землетрясений: тут земная твердь почти никогда не сохраняет спокойствие.

Однако края тектонических плит не гладко отшлифованы. На них достаточно шероховатостей и царапин, есть острые грани и трещины, ребра и исполинские выступы, которые цепляются друг другом, как зубцы застежки - молнии. Когда плиты сдвигаются, то края их остаются на месте, потому что не могут изменить свое положение.

Со временем это приводит к огромным напряжениям в земной коре. В какой-то момент края не могут противостоять растущему напору: выступающие, намертво сцепившиеся участки обламываются и как бы догоняют свою плиту.

Существуют 3 вида взаимодействия литосферных плит: они либо раздвигаются, либо сталкиваются, одна надвигается на другую или одна двигается вдоль другой. Движение это не постоянно, а прерывисто, то есть происходит эпизодически из-за их взаимного трения. Каждая внезапная подвижка, каждый рывок может ознаменоваться землетрясением.

Это природное явление, не всегда поддающееся предсказаниям, наносит огромный ущерб. В мире ежегодно регистрируется 15000 землетрясений, из которых 300 обладают разрушительной силой.

Ежегодно наша планета сотрясает более миллиона раз. 99,5% этих землетрясений - легкие, их сила не превышает по шкале Рихтера 2.5 балла.

Итак, землетрясения - это сильные колебания земной коры, вызываемые тектоническими и вулканическими причинами и приводящие к разрушению зданий, сооружений, пожарам и человеческим жертвам.

История знает массу землетрясений с гибелью большого количества людей:

1920 год - в Китае погибло 180 тысяч человек.

1923 год - в Японии (Токио) погибло более 100 тысяч человек.

1960 год - в Марокко погибло более 12 тысяч человек.

1978 год в Ашхабаде - разрушено более половины города, пострадало более 500 тысяч человек.

1968 год - в восточном Иране погибло 12 тысяч человек.

1970 год - в Перу пострадало более 66 тысяч человек.

1976 год - в Китае - 665 тысяч человек.

1978 год - в Ираке погибло 15 тысяч человек.

1985 год - в Мексике - около 5 тысяч человек.

1988 год в Армении пострадало более 25 тысяч, разрушено 1,5 тыс. деревень, значительно пострадали 12 городов, 2 из которых полностью разрушены (Спитак, Ленинакан).

В 1990 году на севере Ирана в результате землетрясения погибло свыше 50 тысяч человек и около 1 млн. человек ранены и остались без крова.

Известны два главных сейсмических пояса: Среднеземноморско-Азиатский, охватывающий Португалию, Италию, Грецию, Турцию, Иран, Сев. Индию и далее до Малайского архипелага и Тихоокеанский, вклю­чающий Японию, Китай, Дальний Восток, Камчатку, Сахалин, Куриль­скую гряду. На территории России примерно 28% районов сейсмоопасны. Районы возможных 9-балльных землетрясений находятся в При­байкалье, на Камчатке и Курильских островах, 8-балльных - в Южной Сибири и на Северном Кавказе.