Бионическая архитектура. Архитектурная бионика Бионические здания вокруг нас

Природа и люди строят по одним и тем же законам, соблюдая принцип экономии материала и подбирая для создаваемых систем оптимальные конструктивные решения (перераспределение нагрузки, устойчивость, экономию материала, энергии).

Науку, занимающуюся изучением строения и функционирования живых организмов, чтобы использовать это для решения инженерных задач, создания новых приборов и механизмов, называют бионикой (от греческого bios «жизнь»). Этот термин впервые прозвучал 13 сентября 1960 г. в Дайтоне на американском национальном симпозиуме «Живые прототипы - ключ к новой технике» и обозначил новое научное направление, возникшее на стыке биологии и инженерного искусства. Праотцом бионики считается Леонардо да Винчи. Его чертежи и схемы летательных аппаратов основаны на строении крыла птицы.

Длительное время бионика развивалась скачкообразно. Сначала инженеры и конструкторы находили удачное решение какой-либо задачи, а через некоторое время обнаруживалось, что у живых организмов существуют аналогичные конструктивные решения и, как правило, оптимальные.

Сегодня бионика имеет несколько направлений. Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Яркий пример архитектурно-строительной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чем же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Обе конструкции полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия стеблей - кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой. Такое изобретение ХХ века, как застежки «молния» и «липучки», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М.Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования «динамических структур», а в 1991 г. организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1128 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить еще несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Основными направлениями нейробионики являются изучение нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это дает возможность совершенствовать и развивать электронную и вычислительную технику.

Нервная система живых организмов имеет ряд преимуществ перед самыми современными аналогами, изобретенными человеком:
1. Гибкое восприятие внешней информации независимо от формы, в которой она поступает (почерк, шрифт, цвет, тембр и т. д.).
2. Высокая надежность: технические системы выходят из строя при поломке одной или нескольких деталей, а мозг сохраняет работоспособность при гибели даже нескольких сотен тысяч клеток.
3. Миниатюрность. Например, транзисторное устройство с таким же числом элементов, как головной мозг человека, занимало бы объем около 1000 м 3 , тогда как наш мозг занимает объем 1,5 дм 3 .
4. Экономичность потребления энергии - разница просто очевидна.
5. Высокая степень самоорганизации - быстрое приспособление к новым ситуациям, к изменению программ деятельности.

Эйфелева башня и берцовая кость

К 100-й годовщине Великой французской революции в Париже была организована всемирная выставка. На территории этой выставки планировалось воздвигнуть башню, которая символизировала бы и величие Французской революции, и новейшие достижения техники. На конкурс поступило более 700 проектов, лучшим был признан проект инженера-мостовика Александра Гюстава Эйфеля. В конце ХIХ столетия башня, названная именем своего создателя, поразила весь мир ажурностью и красотой. 300-метровая башня стала своеобразным символом Парижа. Ходили слухи, будто бы построена башня по чертежам неизвестного арабского ученого. И лишь спустя более чем полстолетия биологи и инженеры сделали неожиданное открытие: конструкция Эйфелевой башни в точности повторяет строение большой берцовой кости, легко выдерживающей тяжесть человеческого тела. Совпадают даже углы между несущими поверхностями.

Изучение механизмов памяти ведет к созданию «думающих» машин для автоматизации сложных процессов производства и управления.

Давно известно, что птицы, рыбы, насекомые очень чутко и безошибочно реагируют на изменения погоды. Низкий полет ласточек предвещает грозу. По скоплению медуз у берега рыбаки узнают, что можно отправляться на промысел, море будет спокойным. Животные-«биосиноптики» от природы наделены уникальными сверхчувствительными «приборами». Задача бионики - не только найти эти механизмы, но и понять их действие и воссоздать его в электронных схемах, приборах, конструкциях.

Изучение сложной навигационной системы рыб и птиц, преодолевающих тысячи километров во время миграций и безошибочно возвращающихся к своим местам для нереста, зимовки, выведения птенцов, способствует разработке высокочувствительных систем слежения, наведения и распознавания объектов.

В настоящее время большим вкладом в ход научно-технического прогресса являются исследования анализаторных систем животных и человека. Эти системы столь сложны и чувствительны, что пока еще не имеют себе равных среди технических устройств. Например, термочувствительный орган гремучей змеи различает изменения температуры в 0,0010C; электрический орган рыб (скатов, электрических угрей) воспринимает потенциалы в 0,01 микровольта, глаза многих ночных животных реагируют на единичные кванты света, рыбы чувствуют изменение концентрации вещества в воде 1 мг/м3 (=1мкг/л).

Многие живые организмы имеют такие анализаторные системы, которых нет у человека. Например, у кузнечиков на 12-м членике усиков есть бугорок, воспринимающий инфракрасное излучение. У акул и скатов есть каналы на голове и в передней части туловища, воспринимающие изменения температуры в 0,10С. Устройство, воспринимающее радиоактивное излучение, имеют улитки, муравьи и термиты. Многие реагируют на изменения магнитного поля (в основном птицы и насекомые, совершающие дальние миграции). Есть те, кто воспринимает инфра- и ультразвуковые колебания: совы, летучие мыши, дельфины, киты, большинство насекомых и т. д. Глаза пчелы реагируют на ультрафиолетовый свет, таракана - на инфракрасный и т. д.

Есть еще многие системы ориентации в пространстве, устройство которых пока не изучено: пчелы и осы хорошо ориентируются по солнцу, самцы бабочек (например, ночной павлиний глаз, бражник мертвая голова и т. д.) отыскивают самку на расстоянии 10 км. Морские черепахи и многие рыбы (угри, осетры, лососи) уплывают на несколько тысяч километров от родных берегов и безошибочно возвращаются для кладки яиц и нереста к тому же самому месту, откуда сами начали свой жизненный путь. Предполагается, что у них есть две системы ориентации - дальняя, по звездам и солнцу, и ближняя - по запаху (химизм прибрежных вод).

Почему же при современном уровне развития техники природа настолько опережает человека? Во-первых, чтобы понять устройство и принцип действия живой системы, смоделировать ее и воплотить в конкретных конструкциях и приборах, нужны универсальные знания. А сегодня, после длительного процесса дробления научных дисциплин, только начинает обозначаться потребность в такой организации знаний, которая позволила бы охватить и объединить их на основе единых всеобщих принципов.

А во-вторых, в живой природе постоянство форм и структур биологических систем поддерживается за счет их непрерывного восстановления, поскольку мы имеем дело со структурами, которые непрерывно разрушаются и восстанавливаются. Каждая клетка имеет свой период деления, свой цикл жизни. Во всех живых организмах процессы распада и восстановления компенсируют друг друга, и вся система находится в динамическом равновесии, что дает возможность приспосабливаться, перестраивая свои конструкции в соответствии с изменяющимися условиями. Основным условием существования биологических систем является их непрерывное функционирование. Технические системы, созданные человеком, не имеют внутреннего динамического равновесия процессов распада и восстановления, и в этом смысле они статичны. Их функционирование, как правило, периодично. Эта разница между природными и техническими системами очень существенна с инженерной точки зрения.

Живые системы значительно многообразнее и сложнее технических конструкций. Биологические формы часто не могут быть рассчитаны из-за их необычайной сложности. Мы просто еще не знаем законов их формирования. Тайны структурообразования живых организмов, подробности происходящих в них жизненных процессов, устройство и принципы функционирования можно узнать лишь с помощью самой современной аппаратуры, что не всегда доступно. Но даже при наличии новейшей техники очень многое остается «за кадром».

Быстрее, выше, сильнее!

Изучение гидродинамических особенностей строения китов и дельфинов помогло создать особую обшивку подводной части кораблей, которая обеспечивает повышение скорости на 20–25% при той же мощности двигателя. Называется эта обшивка ламинфло и, аналогично коже дельфина, не смачивается и имеет эластично-упругую структуру, что устраняет турбулентные завихрения и обеспечивает скольжение с минимальным сопротивлением. Такой же пример можно привести из истории авиации. Долгое время проблемой скоростной авиации был флаттер - внезапно и бурно возникающие на определенной скорости вибрации крыльев. Из-за этих вибраций самолет разваливался в воздухе за несколько секунд. После многочисленных аварий конструкторы нашли выход - крылья стали делать с утолщением на конце. Через некоторое время аналогичные утолщения были обнаружены на концах крыльев стрекозы. В биологии эти утолщения называются птеростигмы. Новые принципы полета, бесколесного движения, построения подшипников и т. д. разрабатываются на основе изучения полета птиц и насекомых, движения прыгающих животных, строения суставов.

Инженер и природа, или что такое бионика

Био́ника (от др.-греч. βίον - живущее) - прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика - это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Различают :

биологическую бионику , изучающую процессы, происходящие в биологических системах;

теоретическую бионику , которая строит математические модели этих процессов;

техническую бионику , применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Название

Название бионики происходит от древнегреческого слова бион - «ячейка жизни». Изучает бионика биологические системы и процессы с целью применения полученных знаний для решения инженерных задач. Бионика помогает человеку создавать оригинальные технические системы и технологические процессы на основе идей, найденных и заимствованных у природы.

Биомиметика

В англоязычной и переводной литературе чаще употребляется термин биомиметика (от др.-греч. βίος - жизнь, и μίμησις - подражание) в значении - подход к созданию технологических устройств, при котором идея и основные элементы устройства заимствуются из живой природы. Одним из удачных примеров биомиметики является широко распространенная «липучка», прототипом которой стали плоды растения репейник, цеплявшиеся за шерсть собаки швейцарского инженера Жоржа де Местраля.

История развития

Идея применения знаний о живой природе для решения инженерных задач принадлежит Леонардо да Винчи, который пытался построить летательный аппарат с машущими крыльями, как у птиц: орнитоптер.



Появление кибернетики, рассматривающей общие принципы управления и связи в живых организмах и машинах, стало стимулом для более широкого изучения строения и функций живых систем с целью выяснения их общности с техническими системами, а также использования полученных сведений о живых организмах для создания новых приборов, механизмов, материалов и т. п.

Основные направления работ

Основные направления работ по бионике охватывают следующие проблемы:

изучение нервной системы человека и животных и моделирование нервных клеток (нейронов) и нейронных сетей для дальнейшего совершенствования вычислительной техники и разработки новых элементов и устройств автоматики и телемеханики (нейробионика);

исследование органов чувств и других воспринимающих систем живых организмов с целью разработки новых датчиков и систем обнаружения;

изучение принципов ориентации, локации и навигации у различных животных для использования этих принципов в технике;

исследование морфологических, физиологических, биохимических особенностей живых организмов для выдвижения новых технических и научных идей.

Моделирование живых организмов

Создание модели в бионике - это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчёта заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.

И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа - бионическая модель. На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

Именно так, на основе программного моделирования, как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них - изыскание лучшей экспериментальной технологической основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт неформализованного «размытого» моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число её эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач оптимального управления, экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвлённых систем связи и т. п.

Архитектурно-строительная бионика

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых шуб, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Яркий пример шубной архитектурной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. Их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Обе конструкции внутри полые. Склеренхимные (Склеренхима - механическая ткань, которая встречается в органах почти всех высших растений.) тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы) стеблей - кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

Бионика подтверждает, что многие человеческие изобретения имеют аналоги в живой природе, например, застежки «молния» и «липучки» были сделаны на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования «динамических структур», а в 1991 г. организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1228 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 метров. Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить ещё несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Нейробионика

Основными направлениями нейробионики являются изучение физиологии нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это даёт возможность совершенствовать и развивать архитектуру электронной и вычислительной техники. Существуют теории, утверждающие, что развитие нейробионики будет основанием создания искусственного интеллекта.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Яркий пример архитектурно-строительной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чём же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Идентичность строения была выявлена позже. В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой.

Стремление к комфорту, к добротному, уютному и красивому жилью присуще человечеству с давних пор. Каждый из нас хочет, чтобы окружающее пространство входило в резонанс с его внутренним миром. Cейчас у каждого из нас есть шанс построить свой идеальный дом. Может это будет садовый дом с мансардой , как у героев Чехова. А возможно, коттедж с
террасой в американском стиле. Важно то, что он может сочетать в себе все элементы удивительного архитектурного стиля - "бионическая архитектура".

Появлению необычных архитектурных стилей мы обязаны гениям от зодчества. Талант вечно в поиске. Доказательства этому встречаются на каждом шагу в виде памятников архитектуры, разбросанных по всему миру. На протяжении многих лет стили сменяют друг друга, каждый из них неповторим. Современность предлагает новый подход к архитектуре. Одно из новых направлений - бионика, заслуживает особого внимания.

Бионика в переводе с греческого означает "живущий". Изучив строение и способ жизни растений и животных, архитекторы применяют в инженерных сооружениях те же принципы. До сих пор среди исследователей не существует единогласного мнения, творчество каких архитекторов следует отнести к направлению “живой архитектуры”. И все же основоположником бионики можно считать Антонио Гауди, ещё в девятнадцатом столетии построивший первые уникальные дома. Надменная и пресытившаяся архитектурными находками Европа пришла в восторг от творений мастера. А бионика получила мощный толчок к развитию. Уже в начале 20-го века основатель антропософии Рудольф Штейнер создал проект удивительного сооружения под названием Гетеанум. Проект был воплощён в жизнь.

Известная всем конструкция Эйфелевой башни (см. заметку Суперсооружения: Эйфелева башня (Париж)) основана на научной работе швейцарского профессора анатомии Хермана фон Мейера (Hermann Von Meyer). За 40 лет до сооружения парижского инженерного чуда профессор исследовал костную структуру головки бедренной кости в том месте, где она изгибается и под углом входит в сустав. И при этом кость почему-то не ломается под тяжестью тела.

Фон Мейер обнаружил, что головка кости покрыта изощренной сетью миниатюрных косточек, благодаря которым нагрузка удивительным образом перераспределяется по кости. Эта сеть имела строгую геометрическую структуру, которую профессор задокументировал.

В 1866 году швейцарский инженер Карл Кульман (Carl Cullman) подвел теоретическую базу под открытие фон Мейера, а спустя 20 лет природное распределение нагрузки с помощью кривых суппортов было использовано Эйфелем.

Сейчас многие столицы мира украшены зданиями в бионическом стиле. То там, то здесь возникают новые "живущие" сооружения. Голландия и Австралия, Китай и Япония, Канада и даже Россия могут похвалиться бионическими шедеврами.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Так в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше.

Бионика стремится максимально раскрыть назначение каждого помещения в жилище. Никакой взаимозаменяемости комнат. Спать нужно в спальне, готовить на кухне, а гостей принимать в гостиной. Каждая комната предназначена для отведённой ей роли и оборудована для этого с наибольшим комфортом. Дом не будет иметь привычной геометрической формы. Скорее он будет напоминать объект живой природы. Мягкие плавные линии стен, окон, перетекая друг в друга, создадут ощущение движения. Внутри органического дома создаётся впечатление волшебного мира, поскольку этот архитектурный стиль предусматривает обилие света во всех комнатах. Зачастую используются цветные стёкла, поэтому и свет может быть необычного оттенка. Одновременное чувство движения и покоя - вот, пожалуй, главное достоинства дома, выполненного в органическом стиле. Под разными углами зрения неуловимо меняется и само помещение.

Это лишь малая часть того, что можно рассказать о стиле, созданном для человека, стремящегося раскрыть свой внутренний мир, душевный и духовный потенциал. Теперь и архитектура берёт на себя эту непростую задачу.

Каждое живое существо на планете является совершенной работающей системой, приспособленной к окружающей среде. Жизнеспособность таких систем - результат эволюции многих миллионов лет. Раскрывая секреты устройства живых организмов, можно получить новые возможности в архитектуре сооружений. Закономерно возникла необходимость в создании нового направления в науке, суть которого - находить и исследовать такие секреты. Таким направлением стала бионика, которая объединила в себе познания биологии и техники. Бионика призвана решать инженерно-технические задачи, основываясь на результатах исследований живой материи.

Вот несколько биологических конструкций, используемых в архитектуре:

  • паутина - необычайно легкий, экономичный сетчатый материал
  • пчелиные соты, воск
  • муравьиное гнездо. Принцип его построения напоминает о зданиях, возводимых людьми. Имеются подвальные помещения, каждое из которых имеет свое предназначение
  • мягкая мочалка. Ее необычайный узор подходит для изготовления прочных и одновременно элегантных конструкций, которые, например, можно использовать как большие емкости для перевозки воды или масла
  • клеточная мембрана. Двойной переплет жировых китаров, обволакивающий живую клетку, уже используется в так называемой микро-архитектуре.

История бионики

Первые попытки использовать бионику в строительстве предпринял Антонио Гауди. Созданный им Парк Гуэля известен и как «природа, застывшая в камне». В 1921 г. к теме бионики в архитектуре обращается Рудольф Штайнер Гетеанум.

К началу 1980 г. благодаря многолетним трудам специалистов из ЦНИЭЛАБ (Центральная Научно-исследовательская и экспериментально-проектная лаборатория архитектурной бионики), архитектурная бионика признана как новое независимое направление в архитектуре. За это время построено уже немало зданий в биостиле. К ним относятся здание правления NMB Bank в Нидерландах, здание Сиднейской оперы в Австралии, небоскреб SONY в Японии, «Дом Дельфин» в Санкт-Петербурге и другие.

С большим нетерпением весь мир ожидает осуществления проекта башни-города в Шанхае. Ее форма напоминает форму кипариса высотой 1228 м. Небоскреб будет насчитывать 300 этажей, расположенных в двенадцати вертикальных кварталах. Опорой этого сооружения будут сваи, которые под воздействием тяжести вместо того, чтобы углубляться, будут расширяться по принципу гармошки. Построение такого города-башни поможет в решении проблемы перенаселенности Китая, так как он рассчитан примерно на 100 тысяч жителей. «Кипарис» будет возведен с учетом всех требований архитектурной бионики. Создатели этого проекта Кавьер Пиоф и Роза Тервера скромно заявили: «Природа сделала это до нас и лучше нас».

Бионика в архитектуре - это не просто искривленность очертаний форм, внешнее подобие раковинам моллюсков, птичьей скорлупе, пчелиным сотам, ветвям лесной чащи и т.д. Прежде всего это более удобные, более гармоничные, более надежные пространства жизнедеятельности человека. Метод архитектурной бионики объединяет в себе абстрактное и конкретное - законы математики и эмоции. Он создает предпосылки для синтеза науки и искусства.

Бионика в вашем доме

То, какой стиль мы выберем для своего нового дома или дачи, зависит только от нашей фантазии и материальных возможностей. Бионика доказала, что архитектура - это не только палочки и кирпичики. Применить элементы бионики у себя дома или на участке может каждый.

В интерьере - это, прежде всего, светильники и мебель, формы для которых позаимствованы у самой природы. Их, кстати, можно изготовить своими руками. Большой размах для фантазии предоставляет выбор лестниц (внешних или внутренних). Они могут быть пространственных форм, спиральные, из комбинированных материалов.

Выбирая строительные материалы для дома, лучше отдать предпочтение тем, которые не просто долговечны, но и лучше сохраняют тепло. Это обеспечит в будущем экономию электроэнергии на обогревателях и кондиционерах.

Ландшафт на участке нетрудно сделать неповторимым. Для этого лишь обратите внимание на уже имеющиеся камни, ветви, трещины и т.д. Применив немного фантазии, можно создать альпийскую горку (сооружение из камней и растительности, присущей высокогорному климату).
Если имеется большое старое дерево, не спешите его пилить. Его дупляные полости можно использовать, например, как бар для напитков или даже как беседку для отдыха. Здесь не нужен будет кондиционер, так как даже в зной дерево обеспечит постоянную температуру примерно 22 градуса.

Как показывает практика, потенциал неизученных секретов природы огромен. Не надо только бояться их изучать, не надо ограждаться от природы стенами построек, разрушая при этом наш общий дом.

Лозунг бионики: «Природа знает лучше». Что же это за наука такая? Уже само название и такой девиз дают нам понять, что бионика связана с природой. Многие из нас ежедневно сталкиваются с элементами и результатами деятельности науки бионики, даже не подозревая об этом.

Вы слышали о такой науке, как бионика?

Биология - популярное знание, с которым нас знакомят ещё в школе. Почему-то многие считают, что бионика - один из подразделов биологии. На самом деле это утверждение не совсем точное. Действительно, в узком смысле слова бионика - это наука, изучающая живые организмы. Но чаще всего мы привыкли ассоциировать с этим учением нечто другое. Прикладная бионика - наука, которая сочетает в себе биологию и технику.

Предмет и объект бионических исследований

Что изучает бионика? Чтобы ответить на этот вопрос, нужно рассмотреть структурное деление самого учения.

Биологическая бионика исследует природу такой, какая она есть, без попытки вмешательства. Объектом её изучения являются процессы, происходящие внутри

Теоретическая бионика занимается изучением тех принципов, которые были замечены в природе, и на их основе создаёт теоретическую модель, в дальнейшем применяемую в технологиях.

Практическая (техническая) бионика - это применение теоретических моделей на практике. Так сказать, практическое внедрение природы в технический мир.

Откуда всё начиналось?

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов. Чертежи да Винчи иллюстрируют его стремление создать летательный аппарат, способный двигать крыльями, как при полёте птицы. В своё время такие идеи были слишком дерзкими, чтобы стать востребованными. Они заставили обратить на себя внимание значительно позже.

Первым, кто стал применять принципы бионики в архитектуре, был Антони Гауди-и-Курнет. Его имя прочно впечатано в историю этой науки. Архитектурные сооружения по проектам великого Гауди впечатляли в момент их сооружения, и такой же восторг они вызывают через много лет у современных наблюдателей.

Следующим, кто поддержал идею симбиоза природы и технологий, стал Под его руководством началось широкое применение бионических принципов в проектировании зданий.

Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне.

Развитие компьютерной техники и математического моделирования позволяют современным архитекторам намного быстрее и с большей точностью воплощать в архитектуре и других отраслях подсказки природы.

Природные прототипы технических изобретений

Самым простым примером проявления науки бионики является изобретение шарниров. Всем знакомое крепление, основанное на принципе вращения одной части конструкции вокруг другой. Такой принцип используют морские ракушки, для того чтобы управлять двумя своими створками и по надобности открывать их или закрывать. Тихоокеанские сердцевидки-великаны достигают размеров 15-20 см. Шарнирный принцип в соединении их ракушек хорошо просматривается невооружённым взглядом. Мелкие представители этого вида применяют такой же способ фиксации створок.

В быту мы часто используем разнообразные пинцеты. Природным аналогом такого прибора становится острый и клещеобразный клюв веретенника. Эти птицы применяют тонкий клюв, втыкая его в мягкую почву и доставая оттуда мелких жуков, червяков и прочее.

Многие современные приборы и приспособления оснащены присосками. Например, их используют для усовершенствования конструкций ножек различных кухонных приспособлений, чтобы избежать их скольжения во время работы. Также присосками оснащают специальную обувь мойщиков окон высотных зданий для обеспечения их безопасной фиксации. Это нехитрое приспособление тоже позаимствовано у природы. Квакша, имея на ногах присоски, необычайно ловко держится на гладких и скользких листьях растений, а осьминогу они необходимы для тесного контакта со своими жертвами.

Можно найти множество таких примеров. Бионика - это как раз та наука, которая помогает человеку заимствовать у природы технические решения для своих изобретений.

Кто первый - природа или люди?

Иногда случается, что то или иное изобретение человечества уже давно «запатентовано» природой. То есть изобретатели, создавая нечто, не копируют, а придумывают сами технологию или принцип работы, а позже оказывается, что в естественной природе это уже давно существует, и можно было просто подсмотреть и перенять.

Так произошло с обычной липучей застёжкой, которая используется человеком для застегивания одежды. Было доказано, что в для сцепления тонких бородочек между собой тоже применяются крючочки, подобно тем, которые есть на застёжке-липучке.

В строении фабричных труб наблюдается аналогия с полыми стеблями злаков. Продольная арматура, используемая в трубах, сходна со склеренхимными тяжами в стебле. Стальные кольца жёсткости - междоузлия. Тонкая кожица с внешней стороны стебля - это аналог спиральной арматуры в строении труб. Несмотря на колоссальное сходство структуры, учёные самостоятельно изобрели именно такой метод постройки фабричных труб, а уже позже увидели тождество такого строения с природными элементами.

Бионика и медицина

Применение бионики в медицине даёт возможность спасти жизнь многим пациентам. Не прекращаясь, ведутся работы по созданию искусственных органов, способных функционировать в симбиозе с организмом человека.

Первым посчастливилось испытать датчанину Деннису Аабо. Он потерял половину руки, но сейчас имеет возможность воспринимать предметы на ощупь с помощью изобретения медиков. Его протез подключён к нервным окончаниям пострадавшей конечности. Сенсоры искусственных пальцев способны собирать информацию о прикосновении к предметам и передавать её в мозг. Конструкция на данный момент ещё не доработана, она очень громоздкая, что затрудняет её использование в быту, но уже сейчас можно назвать такую технологию настоящим открытием.

Все исследования в данном направлении полностью основываются на копировании природных процессов и механизмов и их техническом исполнении. Это и есть медицинская бионика. Отзывы учёных гласят, что в скором времени их труды дадут возможность менять износившиеся живые органы человека и вместо них использовать механические прототипы. Это действительно станет величайшим прорывом в медицине.

Бионика в архитектуре

Архитектурно-строительная бионика - особая отрасль бионической науки, задачей которой становится органическое воссоединение архитектуры и природы. В последнее время всё чаще при проектировании современных конструкций обращаются к бионическим принципам, позаимствованным у живых организмов.

Сегодня архитектурная бионика стала отдельным архитектурным стилем. Рождалась она с простого копирования форм, а сейчас задачей этой науки стало перенять принципы, организационные особенности и технически их воплотить.

Иногда такой архитектурный стиль называют экостилем. Всё потому, что основные правила бионики - это:

  • поиск оптимальных решений;
  • принцип экономии материалов;
  • принцип максимальной экологичности;
  • принцип экономии энергии.

Как видите, бионика в архитектуре - это не только впечатляющие формы, но и прогрессивные технологии, позволяющие создавать сооружение, отвечающие современным требованиям.

Характеристики архитектурных бионических строений

Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы.

В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями.

Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

Конструкция нового тысячелетия

Ещё в 90-х годах испанской командой архитекторов был создан проект здания, основывающийся на совершенно новой концепции. Это 300-этажное строение, высота которого будет превышать 1200 м. Задумано, что передвижение по этой башне будет происходить с помощью четырёх сотен вертикальных и горизонтальных лифтов, скорость которых - 15 м/с. Страной, согласившейся спонсировать данный проект, оказался Китай. Для строительства был выбран самый густонаселённый город - Шанхай. Воплощение проекта позволит решить демографическую проблему региона.

Башня будет иметь полностью бионическую структуру. Архитекторы считают, что только это сможет обеспечить прочность и долговечность конструкции. Прототипом строения является дерево кипарис. Архитектурная композиция будет иметь не только цилиндрическую форму, похожую на ствол дерева, но и «корни» — новый вид бионического фундамента.

Наружное покрытие здания - это пластичный и воздухопроницаемый материал, имитирующий кору дерева. Система кондиционирования этого вертикального города будет аналогом теплорегулирующей функции кожи.

По прогнозам учёных и архитекторов, такое здание не останется единственным в своём роде. После успешного воплощения количество бионических строений в архитектуре планеты будет только увеличиваться.

Бионические здания вокруг нас

В каких известных творениях была использована наука бионика? Примеры таких сооружений несложно отыскать. Взять хотя бы процесс создания Эйфелевой башни. Долгое время ходили слухи, что этот 300-метровый символ Франции построен по чертежам неизвестного арабского инженера. Позже была выявлена полная её аналогия со строением большой берцовой кости человека.

Кроме башни Эйфеля во всём мире можно найти множество примеров бионических сооружений:

  • возводилась по аналогии с цветком лотоса.
  • Пекинский национальный оперный театр - имитация водяной капли.
  • Плавательный комплекс в Пекине. Внешне повторяет кристаллическую структуру решётки воды. Удивительное дизайнерское решение совмещает и полезную возможность конструкции аккумулировать энергию солнца и в дальнейшем использовать её для питания всех электроприборов, работающих в здании.
  • Небоскрёб "Аква" внешне похож на поток падающей воды. Находится в Чикаго.
  • Дом основателя архитектурной бионики Антонио Гауди - это одно из первых бионических сооружений. До сегодняшнего дня он сохранил свою эстетическую ценность и остаётся одним из самых популярных туристических объектов в Барселоне.

Знания, необходимые каждому

Подводя итоги, можно смело заявить: всё, что изучает бионика, актуально и нужно для развития современного общества. Каждый должен ознакомиться с научными принципами бионики. Без этой науки невозможно представить технический прогресс во многих сферах деятельности человека. Бионика - это наше будущее в полной гармонии с природой.