Контактная сварка. Собираем аппарат для точечной сварки своими руками Простейшая контактная сварка своими руками

Прибор точечной контактной сварки может пригодиться при сборке изделий из тонкого стального листа от 0,1 до 4 мм, для работ с металлом на СТО при рихтовке вмятин, сварке небольших деталей в гараже. Промышленные образцы устройств стоят не дешево, а вот собрать прибор контактной точечной сварки своими руками можно практически из подручных средств. Единственное, с чем придется повозиться, так это с поиском электрического трансформатора. В этом обзоре расскажем об устройстве и принципе действия прибора, схемах сборки аппарата, а также предложим несколько идей по созданию самодельного инструмента.

Читайте в статье:

Контактная точечная сварка – что это такое и где используется

Точечная контактная сварка относится к типу термомеханической сварки. Процесс работы на нем включает следующие этапы:

  1. Совмещают детали в необходимом положении.
  2. Прижимают их между электродами аппарата, последние выступают в качестве прижимного механизма.
  3. В точке стыковки клещей подается разряд, происходит нагрев, деформируясь под воздействием тока, делали прочно соединяются между собой.

Мастеров привлекает еще и то, что приборы такого плана можно собрать буквально из хлама, а процесс сварки максимально опрятен и автоматизирован. Очень часто такие аппараты можно встретить на СТО. Точечная сварка своими руками для сварки автомобиля позволяет выровнять вмятины без необходимости демонтажа элементов кузова, а также провести ремонт труднодоступных конструкций.

Точечная сварка своими руками для сварки автомобиля:

Некоторые промышленные образцы способны выполнять до 600 операций в минуту. Инструмент применяется при клепании металлических конструкций до 4 мм. Такой тип пайки используется при сварке арматур, плоских и угловых сеток, а также каркасов. Таким способом удобно соединять пересекающиеся стержни или стержни с плоскими элементами: листом, полосой, швел­лером и другие конструкции.

Точечная сварка способна решить целый ряд сложных задач:

  1. Обеспечивает точечное и бережное соединения изделий без перегрева лишней поверхности.
  2. Способна соединить металлы разной конфигурации: черные и цветные.
  3. Прекрасно скрепляет профили на сгибах, а также пересекающиеся металлические заготовки, особенно в труднодоступных местах.
  4. Места сварки отличаются высокой прочностью и устойчивостью к дальнейшей деформации.

Принцип действия и устройство аппаратов точечной контактной сварки

После того, как металлические пластины, которые необходимо сварить, зажимаются электродами, на них подается кратковременный импульс электротока большой силы. Время импульса подбирается в зависимости от характеристик двух свариваемых металлов. Обычно разряд длится от 0,01 до 0,1 доли секунды.


Когда импульс проходит сквозь металл, детали расплавляются и между ними образуется общее жидкое ядро и пока оно не застынет, свариваемые поверхности необходимо удерживать под давлением.


Давление на детали снимается постепенно, если необходимо сковать листы на более глубокую толщину относительно друг друга на финальной стадии давление усиливается, это позволит достичь максимальной однородности металлов в месте сварки.

Важно! Чтобы повысить качество сварки важно предварительно обработать поверхности деталей для удаления оксидной пленки или коррозии.

Виды контактной сварки

Точечная сварка – один из самых популярных видов контактной сварки в домашних условиях. Однако, есть еще два типа сварки этой категории, которые используются чаще всего на заводах и в специализированных металлообрабатывающих цехах.

  1. Шовная контактная сварка. Принцип действия шовной контактной сварки не отличается от точечной. Привычные нам щипцы заменяют специальные медные ролики. Сварка в этом случае происходит точечно, но на определенном расстоянии, а сварочный шов напоминает дорожку из отдельных сваренных участков.

    Шовная контактная сварка применяется для сварки швов, как на окружностях, так и на вытянутых крупногабаритных листах.

  2. Стыковая контактная сварка. Этот тип сварки отличается большей площадью одномоментной сварки. Электрический ток переменного импульса подается на свариваемые изделия, контактирующие в стыках. Таким образом, во время подачи импульса нагрев происходит по всей площади касания, еще её называют площадью сечения. Процесс этот полностью механизирован, поэтому для самостоятельной сборки в домашних условиях не подходит.

    Схема машины стыковой контактной сварки

  3. Конденсаторная сварка. По такому же принципу работает и конденсаторная сварка. Ее применяют в тех сферах промышленности, где сплавляются миниатюрные детали толщиной от 0,5 – до 1,5 мм. Такой тип сварки используется в сфере электроники и приборостроения. Преимущество в том, что она практически не оставляет следов и не прожигает металл.

    Самодельный аппарат конденсаторной сварки

Изготовление своими руками контактной сварки из микроволновки

Многие мастера задаются вопросом как из микроволновки сделать сварочный аппарат. На самом деле, самое сложное в этом процессе – разобрать и подготовить трансформатор.

Варианты самодельного сварочного аппарата точечной сварки из микроволновки:

Какие инструмент нужны для работы

Для работы нам потребуются следующие инструменты и комплектующие:

  1. Трансформатор, который мы демонтируем из микроволновки. В зависимости от мощности инструмента можно использовать два или три.
  2. Толстый медный провод.
  3. Электроды (медные или покрытые сплавом меди), которые мы будем использовать в будущем вместо зажимов.
  4. Рычаг для ручного зажима.
  5. Основание для сварочного аппарата.
  6. Кабели и обмоточные материалы.
  7. Набор отверток и болгарка для вскрытия трансформатора.

Важно! Для бытового использования подходит электролитическая медь и ее смеси с маркировкой ЭВ.

Как подготовить к работе силовую часть установки – трансформатор

Трансформатор – сердце прибора. Самый простой способ добыть его – вынуть из старой, но еще работающей, микроволновки. Минимальная мощность устройства должна на выходе составлять 1 кВт. Такая мощность будет достаточной, чтобы сваривать контактным способом листы до 1 мм.


Для нас ценность имеет не сам трансформатор, а его магнитопровод и первичная обмотка. Вторичную обмотку необходимо аккуратно демонтировать.

Извлечение из микроволновки и создание трансформатора контактной сварки

Для того, чтобы переделать его под наши нужды, необходимо болгаркой аккуратно вскрыть по сварочному шву корпус и добраться до магнитопровода.


Далее начинаем процедуру обмотки вторичной обмотки. Чаще всего для этих целей используется многожильный провод с сечением не менее 100 мм 2. Достаточно сделать 2-3 витка,так как напряжение в этом виде сварки не велико. Важно, чтобы изоляция этого провода была термостойкой.


Объединение трансформаторов для получения аппарата большей мощности

Однако, бывают случаи, что мощности одного трансформатора недостаточно и приходится соединять несколько приборов последовательно. В этом случае провод наматывается по очереди через каждую катушку, причем число витков на каждой из них должно быть одинаковым, иначе вы рискуете получить нулевое напряжение из-за возникшей противофазы.

Важно! Чем мощнее трансформатор, тем сильнее может быть скачок напряжения в электросети при тестовом включении прибора


Определение правильности последовательно присоединенных выводов

Для удобства работы одинаковые выводы провода обычно помечают. Но если этого нет, то их можно определить, последовательно соединив первичные обмотки двух трансформаторов. Далее вольтметром проверяем напряжение.


Если вольтметр показывает показания, равные по значению, но противоположные по знаку, то необходимо изменить последовательность присоединения вторичных обмоток трансформатора. При правильной сборке трансформаторов в цепь прибор дает удвоенное показание напряжение, полученное от двух вторичных обмоток.

Как и из чего сделать электроды для контактной сварки

Электроды для точечной сварки имеют разную форму и конфигурацию. Чем мельче размером обрабатываемая деталь, тем острее наконечник электрода.


По форме электроды могут быть прямые, изогнутые, с плоским наконечником или острым. Но чаще всего в практике используются электроды с конусовидными наконечниками. Для того, чтобы устройство не окислялось, электроды соединяют с рабочими проводами при помощи пайки. Однако, все равно в процессе работы они могут изнашиваться, поэтому их необходимо подтачивать (по аналогии с карандашом).

Электрод выполняет сразу несколько функций:

  1. Прижимает обрабатываемые детали.
  2. Проводит токовый разряд.
  3. Отводит излишнее тепло.

Для правильного изготовления электродов обратимся к ГОСТу (14111-90), в котором уже оговорены все возможные диаметры данных элементов (10, 13, 16, 20, 25, 32, 40 мм). Это допустимые и рабочие показатели, отступать от которых не рекомендуется.

Важно! Диаметр электрода должен быть больше или равен диаметру рабочего провода.

Из чего состоит и как работает цепь управления точечной контактной сварки

В сварочном аппарате очень важный параметр – время воздействия на металл. Для регулировки этого показателя используются следующие элементы:

  1. Электролитические конденсаторы С1-С6, с напряжением заряда не менее 50 вольт. Емкость конденсаторов составляет: для С1 и С2 – 47 мкФ, С3 и С4 – 100 мкФ, С5 и С6 – 470 мкФ.
  2. Переключатели П2К с независимой фиксацией.
  3. Кнопки (на схеме КН1) и резисторы (R1 и R2). Контакты кнопки КН1 должны быть: один – нормально-замкнутый, другой – нормально-разомкнутый.

Для установки выключателя следует выбрать первичную обмотку, точнее, ее цепь. Дело в том, что цепь вторичной обмотки отличается слишком большим током, что может стать причиной дополнительного сопротивления и сварки контактов.


Также необходимо создать достаточную силу сжатия, которая обеспечивается рычагом. Чем длиннее будет ручка, тем сильнее давление между электродами. Не забывайте, что включать оборудование необходимо при сведенных контактах, иначе произойдет искрение и их подгорание.

Совет! Прижимной рычаг можно оснастить прочным резиновым кольцом. Он облегчит нагрузочное усилие, а резинка зафиксирует его.

Следите за тем, чтобы оборудование для контактной сварки из микроволновки было надежно зафиксировано на столе, так как усилие может привести к его падению и выходу из строя. Для самодельного сварочного аппарата, сделанного своими руками из микроволновки, необходимо предусмотреть систему охлаждения. Для этих целей может быть использован вентилятор для ПК.

Статья

В магазинах аппараты точечной сварки стоят не дешево, а этот инструмент пригодиться в хозяйстве каждого настоящего мужчины. Поэтому многие решают изготовить это оборудование самостоятельно, используя подручные материалы. Готовый аппарат позволит быстро и надежно соединить различные металлические элементы. Таким образом, ремонт разных конструкций можно будет провести дома, сэкономив на услугах профессионала. Главное преимущество изготовления своими руками – значительная экономия средств на приобретении.

Область применения очень широка. Его можно использовать как для ремонта старых конструкций из металла, так и для создания новых. Такой аппарат позволит с легкостью справиться с изготовлением ворот, лестниц, конструктивных элементов из металла.

Работа устройства напрямую зависит от электрического тока, который нагревает до определенной температуры некоторые участки стальных деталей, соприкасающихся между собой. В данный момент образуется сварное соединение, которое специалисты называют швом. При этом металлы соединяются между собой расплавами друг друга при точечном контакте. Качество выполненной работы напрямую зависит от вида металла, его плотности.

Также необходимо соблюдать таки правила:

  • Сварочная цепь должна характеризоваться низким показателем напряжения (до 10 ватт);
  • Процесс сварки должен длиться несколько секунд;
  • Качественная сварка характеризуется минимальной зоной расплавливания;
  • Большая сила тока сварочного импульса;
  • Полученный после сварки шов должен выдерживать большие нагрузки.

Соблюдение всех вышеупомянутых правил гарантирует получение отличного результата. Изготовить аппарат для точечной сварки своими руками несложно, но нужно выполнять все действия в соответствии с рекомендациями специалистов.

Изготовление устройства

Качественный аппарат для сварки состоит из двух основных частей – контактного блока и источника сварочного импульса. Последний подает автоматически импульс. Сила тока должна быть в пределах 200 А на протяжении 0,03-0,1 с при питании от обычной электросети. Некоторые пользователи советуют выбрать устройство, позволяющее регулировать силу тока для работы с различными видами металла разной толщины.

Контактный блок должен характеризоваться основными требованиями:

  • Хорошее прижатие сварочных поверхностей;
  • При помощи точечного электрода необходимо подвести сварочный сигнал;
  • Удержание заготовок после снятия импульса до полного затвердения.

Чаще всего можно встретить такие решения:

  • заготовки зажимают между электродами;
  • используют 2 разных электрода: точечный и плоский;
  • одна из заготовок является нижним электродом.

Изготовление

Качественный точечный сварочный аппарат можно изготовить самостоятельно. Для этого можно использовать источник сварочного импульса, который использует принцип разряда конденсатора. Схема такого источника достаточно проста.

Сварочные аппараты для сварки с таким типом питания могут сваривать тонкие листы металла (до 0,5мм).

На выходе вторичной обмотки выделяется необходимая сила тока. На первичную обмотку происходит разряд конденсаторов, что способствует возникновению нужного сигнала. Конденсаторные разряды управляются тиристорами. Накопление заряда происходит от включенной вспомогательной цепи трансформатора. Необходимо использовать диоды, которые выпрямляют электрический сигнал.

Как же сделать аппарат?

Это устройство можно собрать из подручных средств. В первую очередь необходимо собрать из инвертора. Необходимо подготовить:

  • трансформатор и ;
  • диоды и дроссели.

Использование всех перечисленных деталей поможет избежать длительной настройки.

Чаще всего такие аппараты для точечной сварки аккумуляторов мужчины изготавливают из деталей ненужной микроволновки. Она может уже находиться у вас дома, а можно позаимствовать и у друзей. Изготовленная точечная сварка из таких деталей характеризуется мощностью около 800А.

Качественный споттер гарантирует отличный результат работы с тонким металлом. Для выполнения домашних задач зачастую этого результата вполне достаточно, ведь сварка металла происходит в определенных точка.

Для изготовления такого аппарата для контактной точечной сварки лучше выбрать большую микроволновку. Ведь в таких моделях мощный трансформатор. А это основа будущего оборудования.

Трансформатор представляет собой сердечник с двумя обмотками. Он держится за счет сварных швов, которые необходимо удалить ножовкой или болгаркой. Будьте аккуратны, ведь обмотка не должна быть поврежденной. После сердечник нужно разделить на 2 части, очистить от клея и бумаги.

Наматываем вторую обмотку трансформатора. Для этого используют кабель, который подходит к прорези трансформатора, который наматывают на 2 витка.

К основанию прикрепляют трансформатор эпоксидной смолой, сжимая тисками.

Вторичная обмотка позволяет увеличить мощность устройства.

Если вы желаете увеличить больше мощность, то можно использовать дополнительный трансформатор из еще одной микроволновки. Его присоединяют к первому.

Схема трансформатора

После того как обмотки будут соединены, можно проверять силу тока. Она не должна превышать 200А. Если значение выше, то могут возникнуть скачки напряжения, которые могут привести к негативным последствиям.

Напряжение должно выходить на первую обмотку. На выходе напряжение не должно превышать 2 вольт.

Для изготовления аккумулятора своими руками необходимо особое внимание уделить корпусу будущего оборудования. Для этого используют дерево. В задней части устройства должны присутствовать отверстия, которые будут отвечать за электроснабжение и выключение.

Изготовленный из дерева корпус сварочного аппарата должен быть отшлифован и покрыт лаком.

После изготавливают аппарат своими руками. Соединяют все детали, подготовить медные провода, которые будут выполнять роль электродов. Для их крепления можно использовать обыкновенную отвертку. Для качественной фиксации к корпусу трансформатор можно прикрепить саморезами. Помните о безопасности, заземление необходимо одеть на одну из клемм.

В устройстве данного аппарата точечной сварки следует предусмотреть дополнительный выключатель, закрепленный саморезами к корпусу. Таким образом, своими руками из сварочного аппарата вы сможете получить выгоду. Это и экономия на приобретении нового устройства и заработок на выполнении несложной работы.

– очень полезный навык.

При наличии в свободной продаже любых моделей инвертора, человек, планирующий сваривать в домашних условиях, имеет выбор – приобрести готовый аппарат или сделать его самостоятельно.

В этой статье мы рассмотрим, что это такое, продемонстрируем учебное видео по контактной сварке, дадим пошаговую инструкцию, как самостоятельно проводить контактную сварку и как можно сделать самодельный сварочный аппарат контактной сварки своими руками из микроволновки и использованных автомобильных аккумуляторов.

Владельцы частных домов, автомобилисты и не только нуждаются в проведении сварочных работ.

В домашних условиях или в условиях небольшой мастерской применение сварочного инвертора для соединения металлических частей вполне по силам.

Принцип его действия заключается в том, что при помощи электрического тока металл разогревается, расплавляется и застывает, образуя сварной шов.

Для фиксации и предотвращения сдвигания, свариваемые детали сжимаются при помощи электродов, по которым подается электрический ток.

Для работы в домашних условиях потребуются мощные источники питания, что влияет на перегрев бытовой проводки.

Перед проведением работ следует убедиться в качестве проводки и, по возможности, заменить ее на новую.

При контактной точечной сварке две заготовки соединяются по поверхности прилегающих краев.

Такая технология подходит для тонких листов, деталей маленького размера и металлических прутов толщиной до 5 мм.

Используют три вида соединения поверхностей: с помощью сопротивления, прерывистого оплавления или непрерывного оплавления.

Для сварки сопротивлением подготовленные заготовки или листы фиксируют и нагревают сварочным током до плавления.

Способ применим для следующих металлов:

  • низкоуглеродистая сталь;
  • цветной металл;
  • соединения меди с латунью и сталью.

Ввиду жестких требований к температурному режиму и отсутствию примесей в местах соединения, этот способ используется редко.

При непрерывном оплавлении заготовки, используются клещи или иные фиксаторы детали, соединяют при включенном токе, после плавки краев соединяемых деталей проводится осадка и выключение подачи тока.

Этот способ наиболее применим для труб с тонкими стенами. Допустимо соединение разных по структуре заготовок.

Основной плюс – высокая скорость работы, серьезный минус – вытекание и угар металла по сварному шву.

Прерывистое оплавление происходит при поочередном плотном и неплотном контакте заготовок во время включенного тока.

Клещи зажима обеспечивают замыкание сварочной линии в месте соприкосновения заготовок до достижения ими температуры 900-950 градусов по Цельсию.

Такой способ применяется в случае, если исходной мощности аппарата не хватает для обеспечения непрерывного оплавления.

Таким образом, контактная сварка состоит из следующих шагов:

  • Подготовка поверхностей к соединению (зачистка, выравнивание контура).
  • Совмещение краев и фиксация заготовок под сварочным аппаратом.
  • Подача электрического тока.
  • Прогревание и оплавление под его действием краев деталей.
  • Осадка и выключение тока.

Рассмотренные выше способы контактной сварки отличаются фиксацией заготовок и подачей тока, в целом, процесс сварки схож.

Для домашней контактной сварки можно сконструировать самодельный аппарат.

Его основные рабочие узлы – сварочный зажим и блок подачи напряжения на конденсаторах, к низковольтной обмотке которого присоединяется электрод.

Второе крыло зажима служит опорой или соединяется (в зависимости от крепления аппарата) с заготовкой, имеющей больший размер.

Видео инструкция по контактной точечной сварке представлена выше.

Сварочный аппарат из микроволновки

Прибор для точечной контактной сварки можно изготовить самостоятельно, использовав трансформатор от микроволновки.

При изготовлении такого сварочного прибора нужно взвесить, что будет дешевле – осуществить покупку инвертора или сделать самостоятельно, применив трансформатор из ненужной микроволновки.

Трансформатор – самая дорогая деталь нашего будущего самодельного прибора. Все остальные расходники – провода, кожух и основа, на которую будет производиться крепление, будут практически в любой мастерской.

Нам потребуется мощность трансформатора не менее 1 кВт. С помощью сварочного аппарата, использующего такой трансформатор, реально делать точечную сварку листов до 1 мм.

Удвоение мощности трансформатора позволит работать с листами до 1,8 мм толщиной. Трансформатор современной микроволновки может быть мощностью до 3 кВт.

При необходимости можно использовать два и три трансформатора. Эта цепь позволит увеличить мощность подаваемого тока.

Требуется вынуть трансформатор из металлического кожура и избавится от шунтов для ограничения тока и вторичной обмотки.

Микроволновая печь использует высокое напряжение, поэтому на первичной обмотке трансформатора присутствует меньшее количество петель, чем на вторичной.

Из-за этого появляется разность потенциалов. Наша задача – изменить вторичную обмотку, приспособив ее под цели контактной сварки.

Тщательно зачистите трансформатор от остатков вторичной проводки и шунтов, при необходимости используйте металлическую щетку или длинный узкий предмет (например, отвертку).

Нетронутой останется только первичная обмотка, вторичную будем делать заново.

Учитывая высокое напряжение, берем многожильную электрическую проводку с сечением не менее одного квадрата.

Если будет использоваться цепь из двух или более трансформаторов, то выводы всех вторничных обмоток от них сводим в одну.

Когда использован один трансформатор, то корпус для него можно приспособить из той же микроволновой печи, уменьшив ширину и длину.

Для системы трансформаторов кожух можно сделать из железного листа, снабдив его изолирующим слоем. Вторичная обмотка формируется 2-4 витками провода.

Однако, толстый слой изоляции, в которую упакован провод, не даст загнуть его по катушке.

Поэтому вынимаем провод из изоляции и в качестве изоляционного покрытия мы сможем применить обычную гибкую изоленту.

Двумя-тремя петлями провода мы добьемся напряжения в 2 Вт.

Для подвода тока к месту сварки создаем рычажный механизм, один рычаг которого жестко закреплен на основной поверхности (для удобства контактной сварки на этой же поверхности можно закрепить с помощью струбцин и трансформатор в кожухе).

Второй рычаг при опускании будет сдавливать детали. Выключатель вводим в цепь первичной обмотки и устанавливаем на верхний рычаг.

Это позволит одновременно сжимать деталь и пускать ток. Клещи в этом случае не используются, а сами наконечники предварительно паяются с проводами для предотвращения окисления.

При точечной сварке будем использовать стержни из меди толщиной больше, чем диаметр провода. В процессе работы их нужно подтачивать и при необходимости менять.

В ходе работы деталь зажимается с помощью рычагов между двумя электродами и пускается ток.

Сварочный аппарат из аккумуляторов

При сварочных работах с помощью электрического сварочного аппарата бытовые электросети терпят существенную перегрузку.

Длительная контактная сварка может привести к расплавлению электропроводки или выходу из строя бытовых приборов. Питание сварочного аппарата можно произвести от автономного источника электроснабжения.

В этом качестве может выступать переносная станция (генератор, работающий на бензине или дизеле), что весьма накладно, а можно источник тока сделать самостоятельно.

Понадобится несколько автомобильных аккумуляторов, вполне допустимы бывшие в употреблении. Идеально, если они будут одной емкости.

Тогда сила тока будет рассчитываться, как 1/10 емкости аккумулятора. Если собраны приборы разной мощности, то для расчета понадобится самая маленькая емкость.

Сделаем цепь из последовательно соединенных аккумуляторов, скрепив соответствующие «плюсы» и «минусы» с помощью проводов и кусачек или, что еще лучше, проводами для прикуривания.

Можно использовать также любые клещи. От свободного «минуса» выводим провод на электрод, который зажимаем в клещи, а от свободного «плюса» на рабочую пластину, в цепь рекомендуется поставить реостат.

Получившийся сварочный аппарат для точечной сварки из автомобильных аккумуляторов готов и может быть использован вдали от источника электроэнергии.

К нему можно сделать самодельное устройство для зарядки. Данный вариант может быть успешно использован опытными сварщиками и не рекомендуется для получения навыков сварки.

Как показано в статье, точечная самодельная контактная сварка вполне доступна. Мы рассмотрели варианты и технологию контактной сварки.

Приведенная информация поможет получить начальные навыки контактной сварки и обеспечить создание сварочного инвертора для точечной сварки самостоятельно из подручных средств.


Аппараты для точечной сварки не так часто используются в быту, как дуговые, но иногда без них невозможно обойтись. Учитывая, что стоимость такого оборудования начинается от $450-$470, рентабельность его покупки вызывает сомнения.

Выход из такой ситуации – контактная точечная сварка своими руками. Но, прежде чем рассказать, как самостоятельно сделать такое устройство, давайте рассмотрим, что представляет собой точечная сварка и технологию ее работы.

Кратко о точечной сварке

Данный тип сварки относится к контактным (термомеханическим). Заметим, что к такой категории также относят шовную и стыковую сварку, но их реализовать в домашних условиях не представляется возможным, поскольку для этой цели понадобится сложное оборудование.

Сварочный процесс включает в себя следующие этапы:

  • детали совмещают в необходимом положении;
  • закрепляют их между электродами аппарата, которые прижимают детали;
  • производится нагрев, в результате которого за счет пластического деформирования детали прочно соединяются между собой.

Производственный аппарат точечной сварки (такой как показан на фото) способен в течение минуты совершить до 600 операций.


Технология процесса

Чтобы нагреть детали до необходимой температуры, на них подается кратковременный импульс элетротока большой силы. Как правило, импульс длится в от 0,01 до 0,1 секунды (время подбирается исходя из характеристик металла, из которого изготовлены детали).

При импульсе металл расплавляется, и между деталями образовывается общее жидкое ядро, пока оно не застынет, свариваемые поверхности необходимо удерживать под давлением. Благодаря этому, остывая, расплавленное ядро кристаллизируется. Рисунок, иллюстрирующий процесс сварки, показан ниже.


Обозначения:

  • A – электроды;
  • B – свариваемые детали;
  • С – ядро сварки.

Давление на детали необходимо для того, чтобы при импульсе по периметру ядра расплавленного метала образовался уплотняющий пояс, не позволяющий вытекать расплаву за пределы зоны, где происходит сварка.

Чтобы обеспечить лучшие условия для кристаллизации расплава, давление на детали снимается постепенно. Если необходимо «проковать» место сварки с целью устранить неоднородности внутри шва, усиливают давление (делают это на финальной стадии).

Обратим внимание, что для обеспечения надежного соединения, а также качества шва, предварительно необходимо обработать поверхности деталей в местах, где будет происходить сварка. Это делается для удаления оксидной пленки или коррозии.

Когда требуется обеспечить надежное соединение деталей толщиной от 1 до 1,5 мм, применяют конденсаторную сварку. Принцип ее действия следующий:

  • блок конденсаторов заряжают электротоком небольшой силы;
  • разряд конденсаторов производится через соединяемые детали (силы импульса достаточно для обеспечения необходимого режима сварки).

Такой тип сварки применяется в тех сферах промышленности, где необходимо соединить миниатюрные и сверхминиатюрные компоненты (радиотехника, электроника и т.д.).

Говоря о технологии точечной сварки следует отметить, что с ее помощью можно соединять между собой разнородные металлы.

Примеры самодельных конструкций

В интернете есть много примеров создания аппаратов, производящих точечную сварку. Приведем несколько наиболее удачных конструкций. Ниже показана схема простого устройства для точечной сварки.


Для реализации нам понадобятся следующие радиодетали:

  • R – переменное сопротивление номиналом 100 Ом;
  • С – конденсатор, рассчитанный на напряжение не менее 25 В с емкостью 1000 мкФ;
  • VD1 – тиристор КУ202, буквенный индекс может быть К, Л, М или Н, можно также использовать ПТЛ-50, но в этом случае емкость «С» необходимо понизить до 1000 мкФ;
  • VD2-VD5 – диоды Д232А, зарубежный аналог – S4M;
  • VD6-VD9 – диоды Д226Б, их можно заменить зарубежным аналогом 1N4007;
  • F – плавкий предохранитель на 5 А.

Необходимо сделать отступление, чтобы рассказать, как изготовить трансформатор TR1. Он изготавливается на базе железа Ш40, с толщиной набора 70 мм. Для первичной обмотки потребуется провод ПЭВ2 Ø0,8 мм. Количество витков в обмотке – 300.

Чтобы сделать вторичную обмотку, понадобится медный многожильный провод Ø4 мм. Его допускается заменить шиной, при условии, что ее сечение будет как минимум 20 мм 2 . Количество витков вторичной обмотки – 10.

Видео: контактная сварка своими руками

Что касается TR2, то для него подойдет любой из маломощных трансформаторов (от 5 до 10 Вт). При этом на обмотке II, используемой для подключения лампы подсветки «H», должно быть выходное напряжение в пределах 5-6 В, а обмотки III – 15 В.

Мощность изготовленного аппарата будет относительно не высокая, в пределах от 300 до 500 А, максимальное время импульса до 0,1 сек (при условии, что номиналы «R» и «С» будут такими же, как на приведенной схеме). Этого вполне достаточно для сварки стальной проволоки Ø0,3 мм или листового металла, если его толщина не превышает 0,2 мм.

Приведем схему более мощного аппарата, у которого сварочный электроток импульса будет в пределах от 1,5 кА до 2 кА.


Перечислим используемые в схеме компоненты:

  • номиналы сопротивлений: R1-1.0 кОм, R2-4.7 кОм, R3-1.1 кОм;
  • емкости в схеме: С1-1.0 мкФ, С2-0,25 мкФ. Причем, С1 должен быть рассчитан под напряжение не менее 630 В;
  • VD1-VD4 диоды – диоды Д226Б, допускается замена на зарубежный аналог 1N4007, вместо диодов можно поставить диодный мост, например, КЦ405А;
  • тиристор VD6 – КУ202Н, его необходимо поместить на радиатор, площадью не менее 8 см 2 ;
  • VD6 – Д237Б;
  • F – плавкий предохранитель на 10 А;
  • К1 – это любой магнитный пускатель, у которого имеется три пары рабочих контактов, а обмотка рассчитана на ~220 В, например, можно установить ПМЕ071 МВУХЛЗ AC3.

Теперь расскажем, как сделать трансформатор ТR1. За основу взят автотрансформатор ЛАТР-9, такой, как показан на фотографии.


Обмотка в этом автотрансформаторе насчитывает 266 витков, сделана она медным проводом Ø1,0 мм, ее мы будем использовать в качестве первичной. Аккуратно разбираем конструкцию, чтобы не повредить обмотку. Вал и прикрепленный к нему передвижной роликовый контакт демонтируем.

Дале нам необходимо изолировать контактную дорожку, с этой целью очищаем ее от пыли, обезжириваем и покрываем лаком. Когда он просохнет дополнительно, изолируем всю обмотку, используя лакоткань.

В качестве вторичной обмотки используем медный провод с площадью сечения как минимум 80 мм 2 . Важно, чтобы изоляция этого провода была термостойкой. Когда все условия соблюдены, делаем им обмотку из трех витков.

Настройка собранного устройства сводится к градированию шкалы переменного резистора, регулирующего время импульса.

Рекомендуем перед тем как приступать к сварке, установить опытным путем оптимальное время для импульса. Если длительность будет излишней, детали будут прожжены, а если меньше необходимой – прочность соединения будет ненадежной.

Как уже писалось выше, аппарат способен выдать сварочный электроток силой до 2000 А, что позволяет сваривать стальной провод Ø3 мм или листовую сталь, толщина которой не превышает 1,1 мм.

Сварка своими руками в данном случае значит не технология производства сварочных работ, а самодельное оборудование для электросварки. Рабочие навыки приобретаются производственной практикой. Безусловно, прежде чем идти в мастерскую, нужно усвоить теоретический курс. Но претворять его в практику можно только, имея на чем работать. Это первый довод в пользу того, чтобы, самостоятельно осваивая сварочное дело, позаботиться вначале о наличии соответствующего оборудования.

Второй – покупной сварочный аппарат стоит дорого. Аренда тоже недешева, т.к. вероятность выхода его из строя при неквалифицированном пользовании велика. Наконец, в глубинке добраться до ближайшего пункта, где можно взять сварочник напрокат, может быть просто долго и трудно. В общем, первые шаги в сварке металлов лучше начинать с изготовления сварочной установки своими руками. А потом – пусть себе стоит в сарае или гараже до случая. Потратиться на фирменную сварку, буде дело пойдет, никогда не поздно.

О чем будем

В настоящей статье рассматривается, как в домашних условиях сделать оборудование для:

  • Электродуговой сварки переменным током промышленной частоты 50/60 Гц и постоянным током до 200 А. Этого хватит, чтобы варить металлоконструкции примерно до забора из профнастила на каркасе из профтрубы или сварного гаража.
  • Микродуговой сварки скруток проводов – очень просто, и полезно при прокладке или ремонте электропроводки.
  • Точечной импульсной контактной сварки – может хорошо пригодиться при сборке изделий из тонкого стального листа.

О чем не будем

Первое, пропустим газовую сварку. Оборудование для нее стоит гроши по сравнению с расходными материалами, баллоны с газом дома не сделаешь, а самодельный газогенератор – серьезный риск для жизни, плюс карбид сейчас, где он еще поступает в продажу, дорог.

Второе – инверторную электродуговую сварку. Действительно, сварочный инвертор-полуавтомат позволяет начинающему дилетанту варить довольно ответственные конструкции. Он легок и компактен, носить его можно рукой. Но покупка в розницу компонентов инвертора, позволяющего стабильно вести качественный шов, обойдется дороже готового аппарата. А с упрощенными самоделками опытный сварщик работать попробует, и откажется – «Дайте нормальный аппарат!» Плюс, точнее минус – чтобы сделать более-менее приличный сварочный инвертор, нужно обладать довольно солидным опытом и познаниями в электротехнике и электронике.

Третье – аргонно-дуговую сварку. С чьей легкой руки пошло гулять в рунете утверждение, что она гибрид газовой и дуговой, неведомо. На самом деле это разновидность дуговой сварки: инертный газ аргон в сварочном процессе не участвует, но создает вокруг рабочей зоны кокон, изолирующий ее от воздуха. В результате сварочный шов получается химические чистым, свободным от примесей соединений металлов с кислородом и азотом. Поэтому варить под аргоном можно цветные металлы, в т.ч. разнородные. Кроме того, возможно уменьшить ток сварки и температуру дуги без ущерба для ее стабильности и варить неплавящимся электродом.

Оборудование для аргонно-дуговой сварки вполне возможно изготовить в домашних условиях, но – газ очень дорогой. Варить же в порядке рутинной хозяйственной деятельности алюминий, нержавейку или бронзу вряд ли понадобится. А если уж надо, то проще взять аргонную сварку в аренду – по сравнению с тем, на сколько (в деньгах) газа уйдет обратно в атмосферу, это копейки.

Трансформатор

Основа всех «наших» видов сварки – сварочный трансформатор. Порядок его расчета и конструктивные особенности существенно отличаются от таковых трансформаторов электропитания (силовых) и сигнальных (звуковых). Сварочный трансформатор работает в прерывистом режиме. Если конструировать его на максимальный ток как трансформаторы непрерывного действия, он получится непомерно большим, тяжелым и дорогим. Незнание особенностей электрических трансформаторов для дуговой сварки – основная причина неудач конструкторов-любителей. Поэтому прогуляемся по сварочным трансформаторам в следующем порядке:

  • немного теории – на пальцах, без формул и зауми;
  • особенности магнитопроводов сварочных трансформаторов с рекомендациями по выбору из случайно подвернувшихся;
  • испытания имеющегося в наличии б/у;
  • расчет трансформатора для сварочного аппарата;
  • подготовка компонент и намотка обмоток;
  • пробная сборка и доводка;
  • ввод в эксплуатацию.

Электрический трансформатор можно уподобить накопительному резервуару водоснабжения. Это довольно глубокая аналогия: трансформатор действует за счет запаса энергии магнитного поля в его магнитопроводе (сердечнике), который может многократно превышать мгновенно передаваемую от сети электропитания потребителю. А формальное описание потерь на вихревые токи в стали похоже на него же для водопотерь на инфильрацию. Потери электроэнергии в меди обмоток формально схожи с потерями напора в трубах за счет вязкого трения в жидкости.

Примечание: различие – в потерях на испарение и, соотв., рассеяние магнитного поля. Последние в трансформаторе частично обратимы, но сглаживают пики энергопотребления во вторичной цепи.

Внешние характеристики электрических трансформаторов

Важный в нашем случае фактор – внешняя вольт-амперная характеристика (ВВАХ) трансформатора, или просто его внешняя характеристика (ВХ) – зависимость напряжения на вторичной обмотке (вторичке) от тока нагрузки, при неизменном напряжении на первичной обмотке (первичке). У силовых трансформаторов ВХ жесткая (кривая 1 на рис.); они подобны мелководному обширному бассейну. Если его как следует изолировать и накрыть крышей, то водопотери минимальны и напор довольно стабилен, как бы там потребители краны ни крутили. Но если в стоке булькнуло – суши весла, вода слита. Применительно к трансформаторам – силовик должен как можно более стабильно держать выходное напряжение до некоторого порога, меньшего, чем максимальная мгновенная мощность потребления, быть экономичным, небольшим и легким. Для этого:

  • Марку стали для сердечника выбирают с более прямоугольной петлей гистерезиса.
  • Конструктивными мерами (конфигурацией сердечника, способом расчета, конфигурацией и расположением обмоток) всячески уменьшают потери на рассеивание, потери в стали и меди.
  • Индукцию магнитного поля в сердечнике берут меньше максимально допустимой для передачи формы тока, т.к. ее искажение снижает КПД.

Примечание: трансформаторную сталь с «угловатым» гистерезисом часто называют магнитожесткой. Это неверно. Магнитожесткие материалы сохраняют сильную остаточную намагниченность, их них делают постоянные магниты. А любое трансформаторное железо – магнитомягкое.

Варить от трансформатора с жесткой ВХ нельзя: шов идет рваный, пережженный, металл разбрызгивается. Дуга неэластичная: чуть не так двинул электродом, гаснет. Поэтому сварочный трансформатор делают похожим уже на обычный водонапорный бак. Его ВХ мягкая (нормального рассеяния, кривая 2): при возрастании тока нагрузки вторичное напряжение плавно падает. Кривая нормального рассеяния аппроксимируется прямой, падающей по углом 45 градусов. Это позволяет за счет снижения КПД кратковременно снимать с того же железа в несколько раз большую мощность, или соотв. уменьшить массогабариты и стоимость трансформатора. Индукция в сердечнике при этом может достигать величины насыщения, а кратковременно даже превосходить ее: трансформатор не уйдет в КЗ с нулевой передачей мощности, как «силовик», но станет нагреваться. Довольно долго: тепловая постоянная времени сварочных трансформаторов 20-40 мин. Если потом дать ему остыть и недопустимого перегрева не было, можно продолжать работу. Относительное падение вторичного напряжения ΔU2 (ему соотв. размах стрелок на рис.) нормального рассеивания плавно растет при увеличении размаха колебаний сварочного тока Iсв, что позволяет легко держать дугу при любых видах работ. Обеспечиваются такие свойства следующим:

  • Сталь магнитопровода берут с гистерезисом, более «овальным».
  • Нормируют обратимые потери на рассеяние. По аналогии: упало давление – потребители много и быстро не выльют. А оператор водоканала успеет включить подкачку.
  • Индукцию выбирают близкой к предельной по перегреву, это позволяет за счет снижения cosφ (параметра, равнозначного КПД) при токе, существенно отличном от синусоидального, взять с той же стали большую мощность.

Примечание: обратимые потери рассеяния значит, что часть силовых линий пронизывает вторичку через воздух минуя магнитопровод. Название не вполне удачное, также как и «полезное рассеяние», т.к. «обратимые» потери для КПД трансформатора ничуть не полезнее необратимых, но они смягчают ВХ.

Как видим, условия совершенно различны. Так что, же непременно искать железо от сварочника? Необязательно, для токов до 200 А и пиковой мощности до 7 кВА, а на хозяйстве этого хватит. Мы расчетно-конструктивным мерами, а также при помощи несложных дополнительных устройств (см. далее) получим на любом железе ВХ, несколько более жесткую, чем нормальная, кривая 2а. КПД энергопотребления сварки при этом вряд ли превысит 60%, но для эпизодических работ для себя это не страшно. Зато на тонких работах и малых токах держать дугу и ток сварки будет несложно, не имея большого опыта (ΔU2.2 и Iсв1), на больших токах Iсв2 получим приемлемое качество шва, и можно будет резать металл до 3-4 мм.

Бывают еще сварочные трансформаторы с крутопадающей ВХ, кривая 3. Это уже скорее насос подкачки: или поток на выходе в номинале независимо от высоты подачи, или его вовсе нет. Они еще более компактны и легки, но, чтобы на крутопадающей ВХ выдержать режим сварки, нужно за время порядка 1 мс реагировать на колебания ΔU2.1 порядка вольта. Электронике это под силу, поэтому трансформаторы с «крутой» ВХ нередко применяются в сварочных полуавтоматах. Если же от такого трансформатора варить вручную, то шов пойдет вялый, недоваренный, дуга опять же неэластичная, а при попытках зажечь ее снова электрод то и дело залипает.

Магнитопроводы

Типы магнитопроводов, пригодных для изготовления сварочных трансформаторов, показаны на рис. Наименования их начинаются с буквосочетания соотв. типоразмера. Л значит ленточный. Для сварочного трансформатора Л или без Л – существенной разницы нет. Если в префиксе есть М (ШЛМ, ПЛМ, ШМ, ПМ) – в игнор без обсуждения. Это железо уменьшенной высоты, для сварочника непригодное при всех прочих выдающихся достоинствах.

Магнитопроводы трансформаторов

После букв типономинала следуют цифры, обозначающие a, b и h на рис. Напр., у Ш20х40х90 размеры поперечного сечения керна (центрального стержня) 20х40 мм (a*b), а высота окна h – 90 мм. Площадь сечения сердечника Sс = a*b; площадь окна Sок = c*h нужна для точного расчета трансформаторов. Мы ею пользоваться не будем: для точного расчета нужно знать зависимости потерь в стали и меди от величины индукции в сердечнике данного типоразмера, а для них – марку стали. Где мы ее возьмем, если мотать будем на случайном железе? Мы посчитаем по упрощенной методике (см. далее), а потом доведем в ходе испытаний. Труда уйдет больше, но зато получим сварку, на которой можно реально работать.

Примечание: если железо ржавое с поверхности, то ничего, свойства трансформатора от этого не пострадают. А вот если на нем есть пятна цветов побежалости – это брак. Когда-то этот трансформатор очень сильно перегрелся и магнитные свойства его железа необратимо испортились.

Еще один важный параметр магнитопровода – его масса, вес. Поскольку удельная плотность стали неизменна, он определяет объем сердечника, и, соотв., мощность, которую с нее можно взять. Для изготовления сварочных трансформаторов пригодны магнитопроводы массой:

  • О, ОЛ – от 10 кг.
  • П, ПЛ – от 12 кг.
  • Ш, ШЛ – от 16 кг.

Почему Ш и ШЛ нужны тяжелее, понятно: у них есть «лишний» боковой стержень с «плечиками». ОЛ может быть легче, потому что в нем нет углов, на которые нужен излишек железа, а изгибы силовых магнитных линий плавнее и по некоторым другим причинам, о которых – уже в след. разделе.

Себестоимость трансформаторов на торах высока вследствие сложности их намотки. Поэтому использование тороидальных сердечников ограничено. Подходящий для сварки тор можно, во-первых, извлечь из ЛАТРа – лабораторного автотрансформатора. Лабораторный, значит не должен бояться перегрузок, и железо ЛАТРов обеспечивает ВХ, близкую к нормальной. Но…

ЛАТР – штука очень полезная, первое. Если сердечник еще жив, лучше ЛАТР восстановить. Вдруг не нужен, можно продать, и вырученного хватит на пригодную для своих нужд сварку. Поэтому «голые» сердечники ЛАТРов найти сложно.

Второе – ЛАТРы мощностью до 500 ВА для сварки слабы. От железа ЛАТР-500 можно добиться сварки электродом 2,5 в режиме: 5 мин варим – 20 мин он остывает, а мы накаляемся. Как в сатире Аркадия Райкина: раствор бар, кирпич йок. Кирпич бар, раствор йок. ЛАТРы же 750 и 1000 – большая редкость и годные.

Еще подходящий по всем свойствам тор – статор электромотора; сварка из него получится хоть на выставку. Но найти его не легче, чем железо ЛАТРа, а мотать на него много сложнее. Вообще, сварочный трансформатор из статора электродвигателя – отдельная тема, столько там сложностей и нюансов. Прежде всего – с навивкой толстого провода на «бублик». Не имея опыта намотки тороидальных трансформаторов, вероятность испортить дорогой провод, а сварки не получить, близка к 100%. Поэтому, увы, со с варочным аппаратом на троидальн6ом трансформаторе придется повременить.

Броневые сердечники конструктивно рассчитаны на минимальное рассеяние, и нормировать его практически невозможно. Сварка на обычном Ш или ШЛ получится слишком жесткой. Кроме того, условия охлаждения обмоток на Ш и ШЛ наихудшие. Единственно пригодные для сварочного трансформатора броневые сердечники – увеличенной высоты с разнесенными галетными обмотками (см. далее), слева на рис. Разделяются обмотки диэлектрическими немагнитными термостойкими и механически прочными прокладками (см. далее) толщиной в 1/6-1/8 высоты керна.

Пластины броневых магнитопроводов и галетные обмотки

Шихтуется (собирается из пластин) сердечник Ш для сварки обязательно вперекрышку, т.е. пары ярмо-пластина поочередно ориентируются туда-обратно относительно друг друга. Способ нормирования рассеяния немагнитным зазором для сварочного трансформатора непригоден, т.к. потери дает необратимые.

Если подвернется шихтованный Ш без ярем, но с просечкой пластин между керном и перемычкой (в центре), вам повезло. Шихтуют пластины сигнальных трансформаторов, а сталь на них, для уменьшения искажений сигнала, идет дающая нормальную ВХ изначально. Но вероятность такого везения очень мала: сигнальные трансформаторы на киловаттные мощности – редчайшая диковина.

Примечание: не пытайтесь собрать высокий Ш или ШЛ из пары обычных, как справа на рис. Сплошной прямой зазор, хоть и очень тонкий – необратимое рассеяние и крутопадающая ВХ. Тут потери рассеивания почти аналогичны потерям воды на испарение.

Намотка обмоток трансформатора на стержневом сердечнике

Наиболее пригодны для сварки сердечники стержневые. Из них – шихтуемые парами одинаковых Г-образных пластин, см. рис., их необратимое рассеяние наименьшее. Второе, обмотки П и ПЛов мотаются точно одинаковыми половинками, по половине витков на каждую. Малейшая магнитная или токовая асимметрия – трансформатор гудит, греется, а тока нет. Третье, что может показаться неочевидным не забывшим школьное правило буравчика – обмотки на стержни навиваются в одном направлении . Что-то не так кажется? Магнитный поток в сердечнике обязательно должен быть замкнут? А вы крутите буравчики по току, а не по виткам. Направления-то токов в полуобмотках противоположные, там и магнитные потоки показаны. Можно и проверить, если защита проводки надежная: подать сеть на 1 и 2’, а замкнуть 2 и 1’. Если автомат сразу не выбьет, то трансформатор взвоет и затрясется. Впрочем, кто там знает, что у вас с проводкой. Лучше не надо.

Примечание: можно еще встретить рекомендации – мотать обмотки сварочного П или ПЛ на разных стержнях. Мол, ВХ смягчается. Так-то оно так, но сердечник для этого нужен специальный, со стержнями разного сечения (вторичка на меньшем) и выемками, выпускающими силовые линии в воздух в нужном направлении, см. рис. справа. Без этого – получим крикливый, трясучий и прожорливый, но не варящий трансформатор.

Если есть трансформатор

Защитный автомат на 6,3 А и амперметр переменного тока помогут также определить пригодность старого сварочника, валявшегося бог знает где и черт знает как. Амперметр нужен или бесконтактный индукционный (токовые клещи), или стрелочный электромагнитный на 3 А. Мультиметр с пределами переменного тока будет недопустимо врать, т.к. форма тока в цепи окажется далека от синусоидальной. Еще – жидкостный бытовой термометр с длинной шейкой, или, лучше, цифровой мультиметр с возможностью измерения температуры и щупом для этого. Пошагово процедура испытаний и подготовки к дальнейшей эксплуатации старого сварочного трансформатора производится так:

Расчет сварочного трансформатора

В рунете можно найти разные методики расчета сварочных трансформаторов. При кажущемся разнобое большинство из них верны, но при полном знании свойств стали и/или для конкретного ряда типономиналов магнитопроводов. Предлагаемая методика сложилась в советские времена, когда вместо выбора был дефицит всего. У рассчитанного по ней трансформатора ВХ падает немного крутовато, где-то между кривыми 2 и 3 на рис. в начале. Для резки так годится, а для работ потоньше трансформатор дополняется внешними устройствами (см. далее), растягивающими ВХ по оси тока до кривой 2а.

Основа расчета обычна: дуга стабильно горит под напряжением Uд 18-24 В, а для ее зажигания требуется мгновенный ток в 4-5 раз больший номинального сварочного. Соотв., минимальное напряжение холостого хода Uхх вторички будет 55 В, но для резки, раз из сердечника выжимается все возможное, берем не стандартные 60 В, а 75 В. Больше никак: и по ТБ недопустимо, и железо не вытянет. Еще одна особенность, по тем же причинам – динамические свойства трансформатора, т.е. его способность быстро переходить из режима КЗ (скажем, при замыкании каплями металла) в рабочий, выдерживаются без дополнительных мер. Правда, такой трансформатор склонен к перегреву, но, раз он свой и на глазах, а не дальнем углу цеха или площадки, будем считать это допустимым. Итак:

  • По формуле из п.2 пред. списка находим габаритную мощность;
  • Находим максимально возможный сварочный ток Iсв = Pг/Uд. 200 А обеспечены, если с железа можно снять 3,6-4,8 кВт. Правда, в 1-м случае дуга будет вялой, и варить можно будет только двойкой или 2,5;
  • Рассчитываем рабочий ток первички при максимально допустимом для сварки напряжении сети I1рmax = 1,1Pг(ВА)/235 В. Вообще-то норма на сеть 185-245 В, но для самодельного сварочника на пределе это слишком. Берем 195-235 В;
  • По найденному значению определяем ток срабатывания защитного автомата как 1,2I1рmax;
  • Принимаем плотность тока первички J1 = 5 А/кв. мм и, пользуясь I1рmax, находим диаметр ее провода по меди d = (4S/3,1415)^0,5. Полный его диаметр при самостоятельном изолировании D = 0,25+d, а если провод готовый - табличный. Для работы в режиме «кирпич бар, раствор йок» можно взять J1 = 6-7 А/кв. мм, но только, если нужного провода нет и не предвидится;
  • Находим количество витков на вольт первички: w = k2/Sс, где k2 = 50 для Ш и П, k2 = 40 для ПЛ, ШЛ и k2 = 35 для О, ОЛ;
  • Находим общее к-во ее витков W = 195k3w, где k3 = 1,03. k3 учитывает потери энергии обмоткой на рассеяние и в меди, что формально выражается несколько абстрактным параметром собственного падения напряжения обмотки;
  • Задаемся коэффициентом укладки Kу = 0,8, добавляем по 3-5 мм к a и b магнитопровода, рассчитываем к-во слоев обмотки, среднюю длину витка и метраж провода
  • Рассчитываем аналогично вторичку при J1 = 6 А/кв. мм, k3 = 1,05 и Kу = 0,85 на напряжения 50, 55, 60, 65, 70 и 75 В, в этих местах будут отводы для грубой подгонки режима сварки и компенсации колебаний питающего напряжения.

Намотка и доводка

Диаметры проводов в расчете обмоток получаются как правило больше 3 мм, а лакированные обмоточные провода с d>2,4 мм в широкой продаже редки. Кроме того, обмотки сварочника испытывают сильные механические нагрузки от электромагнитных сил, поэтому готовые провода нужны с дополнительной текстильной обмоткой: ПЭЛШ, ПЭЛШО, ПБ, ПБД. Найти их еще труднее, и стоят они очень дорого. Метраж же провода на сварочник таков, что более дешевые голые провода возможно изолировать самостоятельно. Дополнительное преимущество – свив до нужного S несколько многожильных проводов, получим провод гибкий, мотать которым куда легче. Кто пробовал уложить на каркас вручную шину хотя бы в 10 квадратов, оценит.

Изолирование

Допустим, есть в наличии провод 2,5 кв. мм в ПВХ изоляции, а на вторичку надо 20 м на 25 квадратов. Готовим 10 катушек или бухт по 25 м. Отматываем с каждой примерно по 1 м провода и снимаем штатную изоляцию, она толстая и не термостойкая. Оголенные провода скручиваем парой пассатижей в ровную тугую косу, а ее обматываем, в порядке нарастания стоимости изоляции:

  • Малярным скотчем с нахлестом витков 75-80%, т.е. в 4-5 слоев.
  • Миткалевой тесьмой с нахлестом в 2/3-3/4 витка, т.е в 3-4 слоя.
  • Х/б изолентой с нахлестом в 50-67%, в 2-3 слоя.

Примечание: провод для вторичной обмотки готовится и мотается она после намотки и испытаний первичной, см. далее.

Тонкостенный самодельный каркас не выдержит давления витков толстого провода, вибраций и рывков при работе. Поэтому обмотки сварочных трансформаторов делают бескаркасными галетными, а на сердечнике закрепляют клиньями из текстолита, стеклотекстолита или, в крайнем случае, пропитанной жидким лаком (см. выше) бакелитовой фанеры. Инструкция по намотке обмоток сварочного трансформатора такова:

  • Готовим деревянную бобышку высотой по высоте обмотки и с размерами в поперечнике на 3-4 мм больше a и b магнитопровода;
  • Прибиваем или прикручиваем к ней временные фанерные щеки;
  • Временный каркас обматываем в 3-4 слоя тонкой полиэтиленовой пленкой с заходом на щеки и заворотом на их внешнюю сторону, чтобы провод не приклеился к дереву;
  • Мотаем предварительно изолированную обмотку;
  • По намотке дважды пропитываем до протекания насквозь жидким лаком;
  • по высыхании пропитки аккуратно снимаем щеки, выдавливаем бобышку и отдираем пленку;
  • обмотку в 8-10 местах равномерно по окружности туго обвязываем тонки шнуром или пропиленовым шпагатом – она готова к испытаниям.

Доводка и домотка

Шихтуем сердечник в галету и стягиваем его болтами, как положено. Испытания обмотки производятся полностью аналогично испытаниям сомнительного готового трансформатора, см. выше. Лучше воспользоваться ЛАТРом; Iхх при входном напряжении 235 В не должен превышать 0,45 А на 1 кВА габаритной мощности трансформатора. Если больше – первичку доматывают. Соединения провода обмотки делаются на болтах (!), изолируются термоусаживаемой трубкой (ТУТ) в 2 слоя или х/б изолентой в 4-5 слоев.

По результатам испытаний корректируется число витков вторички. Напр., расчет дал 210 витков, а реально Iхх влез в норму при 216. Тогда расчетные витки секций вторички умножаем на 216/210 = 1,03 прибл. Не пренебрегайте знаками после запятой, от них во многом зависит качество трансформатора!

После доводки сердечник разбираем; галету туго обматываем теми же малярным скотчем, миткалем или «тряпочной» изолентой в 5-6, 4-5 или 2-3 слоя соотв. Мотать поперек витков, а не по ним! Теперь еще раз пропитываем жидким лаком; когда просохнет – дважды неразбавленным. Эта галета готова, можно делать вторичную. Когда обе будут на сердечнике, еще раз испытываем теперь уже трансформатор на Iхх (вдруг где-то завитковало), закрепляем галеты и весь трансформатор пропитываем нормальным лаком. Уф-ф, самая муторная часть работы позади.

Но он у нас пока слишком крут, не забыли? Нужно умягчить. Простейший способ – резистор во вторичной цепи – нам не подходит. Все очень просто: на сопротивлении всего лишь 0,1 Ом при токе 200 рассеется теплом 4 кВт. Если у нас сварочник на 10 и более кВА, а варить нужно тонкий металл, резистор нужен. Какой бы ни был ток выставлен регулятором, его выбросы при зажигании дуги неизбежны. Без активного балласта они местами пережгут шов, а резистор их погасит. Но нам, маломощным, он него толку не будет.

Регулировка режима сварки реактивной катушкой

Реактивный балласт (катушка индуктивности, дроссель) лишней мощности не отберет: она поглотит выбросы тока, а потом плавно отдаст их дуге, это и растянет ВХ как надо. Но тогда нужен дроссель с регулировкой рассеяния. А для него – сердечник почти такой же, как и у трансформатора, и довольно сложная механика, см. рис.

Самодельный балласт сварочного трансформатора

Мы пойдем другим путем: применим активно-реактивный балласт, у старых сварщиков в просторечии именуемый кишкой, см. рис. справа. Материал – стальная проволока-катанка 6 мм. Диаметр витков – 15-20 см. Сколько их – на рис. видно, для мощности до 7 кВА эта кишка правильная. Воздушные промежутки между витками – 4-6 см. С трансформатором активно-реактивный дроссель соединяется дополнительным отрезком сварочного кабеля (шланга, попросту), а электрододержатель присоединяется к нему зажимом-прищепкой. Подбирая точку присоединения, можно, вкупе с переключением на отводы вторички, точно настроить рабочий режим дуги.

Примечание: активно-реактивный дроссель в работе может греться докрасна, поэтому ему необходима несгораемая термопрочная диэлектрическая немагнитная подкладка. По идее, специальный керамический ложемент. Допустима замена его сухой песчаной подушкой, или уже формально с нарушением, но не грубым, сварочную кишку укладывают на кирпичи.

А остальное?

Примитивный держатель сварочного электрода

Это значит прежде всего – электрододержатель и присоединительное устройство обратного шланга (зажим, прищепка). Их, раз у нас трансформатор на пределе, нужно купить готовые, а таких, как на рис. справа, не надо. Для сварочного аппарата на 400-600 А качество контакта в держателе мало ощутимо, и просто приматывание обратного шланга он тоже выдержит. А наш самодельный, работающий с натугой, может забарахлить вроде бы непонятно отчего.

Далее, корпус аппарата. Его нужно делать из фанеры; желательно бакелитовой пропитанной, как описано выше. Днище – толщиной от 16 мм, панель с клеммником – от 12 мм, а стенки и крышку – от 6 мм, чтобы при переноске не оторвались. Почему не листовая сталь? Она ферромагнетик и в поле рассеяния трансформатора может нарушить его работу, т.к. мы вытягиваем из него все, что возможно.

Что до клеммных колодок, то самые клеммы делаются из болтов от М10. Основа – те же текстолит или стеклотекстолит. Гетинакс, бакелит и карболит не годятся, довольно скоро пойдут крошиться, трескаться и расслаиваться.

Пробуем постоянку

Сварка постоянным током имеет ряд преимуществ, но ВХ любого сварочного трансформатора на постоянке ужесточается. А у нашего, рассчитанного на минимально возможный запас по мощности, станет недопустимо жесткой. Дроссель-кишка тут уже не поможет, даже если бы он работал на постоянном токе. Кроме того, надо защитить дорогущие выпрямительные диоды на 200 А от бросков тока и напряжения. Нужен возвратно-поглощающий фильтр инфранизких частот, ФИНЧ. Хотя на вид он отражающий, но нужно учесть сильную магнитную связь между половинами катушки.

Схема электродуговой сварки постоянным током

Известная много лет схема такого фильтра дана на рис. Но сразу же по ее внедрении любителями выяснилось, что рабочее напряжение конденсатора С мало: выбросы напряжения при зажигании дуги могут достигать 6-7 значений ее Uхх, т.е.450-500 В. Далее, конденсаторы нужны выдерживающие циркуляцию большой реактивной мощности, только и только масляно-бумажные (МБГЧ, МБГО, КБГ-МН). О массогабаритах одинарных «банок» этих типов (кстати, и не дешевых) дает представление след. рис., а на батарею их понадобится 100-200.

Масляно-бумажные конденсаторы

С магнитопроводом катушки проще, хотя и не совсем. Для него подойдут 2 ПЛа силового трансформатора ТС-270 от старых ламповых телевизоров-«гробов» (данные есть в справочниках и в рунете), или аналогичные, или ШЛ с похожими либо большими a, b, c и h. Из 2-х ПЛов собирают ШЛ с зазором, см. рис., в 15-20 мм. Фиксируют его текстолитовыми или фанерными прокладками. Обмотка – изолированный провод от 20 кв. мм, сколько влезет в окно; 16-20 витков. Мотают ее в 2 провода. Конец одного соединяют с началом другого, это будет средняя точка.

Броневой магнитопровод с немагнитным зазором

Настройка фильтра производится по дуге на минимальном и макисмальном значениях Uхх. Если дуга на минимале вялая, электрод липнет, зазор уменьшают. Если на максимале жжет металл – увеличивают или, что будет эффективнее, срезают симметрично часть боковых стержней. Чтобы сердечник от этого не рассыпался, его пропитывают жидким, а потом нормальным лаком. Найти оптимум индуктивности довольно трудно, но зато потом сварка работает безукоризненно и на переменном токе.

Микродуга

О назначении микродуговой сварки сказано вначале. «Аппаратура» для нее предельно проста: понижающий трансформатор 220/6,3 В 3-5 А. В ламповые времена радиолюбители подключались к накальной обмотке штатного силового трансформатора. Один электрод – сама скрутка проводов (можно медь-алюминий, медь-сталь); другой – графитовый стерженек вроде грифеля от карандаша 2М.

Сейчас для микродуговой сварки используют более компьютерные блоки питания, или, для импульсной микродуговой сварки, батареи конденсаторов, см. видео ниже. На постоянном токе качество, работы, разумеется, улучшается.

Видео: самодельный аппарат для сварки скруток

Контакт! Есть контакт!

Контактная сварка в промышленности используется преимущественно точечная, шовная и стыковая. В домашних условиях, прежде всего по энергопотреблению, осуществима импульсная точечная. Пригодна она для сваривания и приваривания тонких, от 0,1 до 3-4 мм, стальных листовых деталей. Дуговая сварка тонкостенку прожжет, а если деталь с монетку и менее, то самая мягкая дуга сожжет ее целиком.

Схема точечной контактной сварки

Принцип действия точечной контактной сварки иллюстрирует рис: медные электроды с силой сжимают детали, импульс тока в зоне омического сопротивления сталь-сталь нагревает металл до того, что происходит электродиффузия; металл не плавится. Ток для этого нужен ок. 1000 А на 1 мм толщины свариваемых деталей. Да, ток в 800 А прихватит листы по 1 и даже 1,5 мм. Но если это не поделка для забавы, а, допустим, оцинкованный профнастил забора, то первый же сильный порыв ветра напомнит: «Мужик, а ток-то слабоват был!»

Тем не менее, контактная точечная сварка намного экономичнее дуговой: напряжение холостого хода сварочного трансформатора для нее – 2 В. Оно складывается 2-х контактных разностей потенциалов сталь-медь и омического сопротивления зоны провара. Рассчитывается трансформатор для контактной сварки аналогично ему же для дуговой, но плотность тока во вторичной обмотке берут 30-50 и более А/кв. мм. Вторичка контактно-сварочного трансформатора содержит 2-4 витка, хорошо охлаждается, а его коэффициент использования (отношение времени сварки к времени работы на холостом ходу и остывания) многократно ниже.

В рунете немало описаний самодельных импульсно-точечных сварочников из негодных микроволновок. Они, в общем-то, правильные, а в повторении, как написано в «1001 ночи», пользы нет. И старые микроволновки на помойках кучами не валяются. Поэтому займемся конструкциями менее известными, но, между прочим, более практичными.

Простая самодельная установка контактной сварки

На рис. – устройство простейшего аппарата для импульсной точечной сварки. Им можно сваривать листы до 0,5 мм; для мелких поделок он подходит отлично, а магнитопроводы такого и большего типоразмера относительно доступны. Его достоинство, помимо простоты – прижим ходовой штанги сварочных клещей грузом. Для работы с контактно-сварочным импульсником не помешала бы и третья рука, а если одной приходится с силой сжимать клещи, то вообще неудобно. Недостатки – повышенная аварийно- и травмоопасность. Если случайно дать импульс, когда электроды сведены без свариваемых деталей, то из клещей ударит плазма, полетят брызги металла, защиту проводки вышибет, а электроды сплавятся намертво.

Вторичная обмотка – из медной шины 16х2. Ее можно набрать из полосок тонкой листовой меди (получится гибкая) или сделать из отрезка сплющенной трубки подачи хладоагента бытового кондиционера. Изолируется шина вручную, как описано выше.

Здесь на рис. – чертежи аппарата импульсной точечной сварки помощнее, на сварку листа до 3 мм, и понадежнее. Благодаря довольно мощной возвратной пружине (от панцирной сетки кровати) случайное схождение клещей исключено, а эксцентриковый прижим обеспечивает сильное стабильное сжатие клещей, от чего существенно зависит качество сварного стыка. В случае чего прижим можно мгновенно сбросить одним ударом по рычагу эксцентрика. Недостаток – изолирующие узлы клещей, их слишком много и они сложные. Еще один – алюминиевые штанги клещей. Они, во-первых, не столь прочны, как стальные, во-вторых, это 2 ненужных контактных разности. Хотя теплоотвод по алюминию, безусловно, отличный.

Об электродах

Электрод контактной сварки в изолирующей втулке

В любительских условиях целесообразнее изолировать электроды в месте установки, как показано на рис. справа. Дома не конвейер, аппарату всегда можно дать остыть, чтобы изолирующие втулки не перегрелись. Такая конструкция позволит сделать штанги из прочной и дешевой стальной профтрубы, а еще удлинить провода (до 2,5 м это допустимо) и пользоваться контактно-сварочным пистолетом или выносными клещами, см. рис. ниже.

На рис. справа видна еще одна особенность электродов для точечной контактной сварки: сферическая контактная поверхность (пятка). Плоские пятки долговечнее, поэтому электроды с ними широко используются в промышленности. Но диаметр плоской пятки электрода должен быть равен 3-м толщинам прилегающего свариваемого материала, иначе пятно провара пережжется или в центре (широкая пятка), или по краям (узкая пятка), и от сварного стыка пойдет коррозия даже по нержавейке.

Пистолет и выносные клещи для контактной сварки

Последний момент об электродах – их материал и размеры. Красная медь быстро выгорает, поэтому покупные электроды для контактной сварки делают из меди с присадкой хрома. Такими следует пользоваться, при нынешних ценах на медь это более чем оправдано. Диаметр электрода берут в зависимости от режима его использования в расчете на плотность тока 100-200 А/кв. мм. Длина электрода по условиям теплопередачи не менее 3-х его диаметров от пятки до корня (начала хвостовика).

Как давать импульс

В простейших самодельных аппаратах импульсно-контактной сварки импульс тока дают вручную: просто включают сварочный трансформатор. Это ему, конечно, на пользу не идет, а сварка – то непровар, то пережог. Однако автоматизировать подачу и нормировать сварочные импульсы не так уж сложно.

Схема простого формирователя импульсов для контактной сварки

Схема простого, но надежного и проверенного долгой практикой формирователя сварочных импульсов дана на рис. Вспомогательный трансформатор Т1 – обычный силовой на 25-40 Вт. Напряжение обмотки II – по лампочке подсветки. Можно вместо нее поставить 2 включенных встречно-параллельно светодиода с гасящим резистором (обычным, на 0,5 Вт) 120-150 Ом, тогда напряжение II будет 6 В.

Напряжение III – 12-15 В. Можно 24, тогда конденсатор С1 (обычный электролитический) нужен на напряжение 40 В. Диоды V1-V4 и V5-V8 – любые выпрямительные мосты на 1 и от 12 А соотв. Тиристор V9 – на 12 и более А 400 В. подойдут оптотиристоры из компьютерных блоков питания или ТО-12,5, ТО-25. Резистор R1 – проволочный, им регулируют длительность импульса. Трансформатор Т2 – сварочный.