Rcl измеритель цифровой своими руками. Самодельные измерительные приборы. Особенности измерений, или чтобы не попасть впростак

Прибор позволяет измерять сопротивление от 1 Ома до 10 МОм, емкость от 100 пФ до 1000 мкФ, индуктивность от 10 мГ до 1000 Г на семи диапазонах, выбираемых переключателем SA1 в соответствии с таблицей, изображенной на передней панели.

Принцип работы простого измерителя RCL, предложенного Александром Маньковским, основан на балансе моста переменного тока. Балансируют мост переменным резистором R11, ориентируясь на минимум показаний микроамперметра Р2 или внешнего вольтметра переменного тока, подключаемого к клеммам Р1. Измеряемый резистор, конденсатор или катушку индуктивности подключают к клеммам Х1, Х2, предварительно установив переключатель SA3 в положение R, С или L. В качестве R11 применен проволочный резистор ППБ-ЗА.

Градуировку его шкалы (см. эскиз передней панели прибора на рис.2) осуществляют следующим образом. SA3 переводят в положение «R», SA1 -«3», а к зажимам Х1, Х2 поочередно подключают образцовые резисторы сопротивлением 100, 200, 300, ... 1000 Ом и при каждом балансе моста ставят соответствующую отметку. Емкость конденсатора С1 подбирают по балансу моста (минимуму отклонения стрелки Р2), установив SA3 в положение «С», SA1 - «5», R11 - на отметку «1», а к зажимам Х1, Х2 подключив образцовый конденсатор емкостью 0,01 мкФ. Сетевой трансформатор Т1 должен иметь вторичную обмотку на 18 В при токе до 1 А.

Прибор позволяет измерять сопротивление от 1 Ома до 10 МОм, емкость от 100 пФ до 1000 мкФ, индуктивность от 10 мГ до 1000 Г на семи диапазонах, выбираемых переключателем SA1 в соответствии с таблицей, изображенной на передней панели рис.2

Радиолюбитель №9/2010, с. 18, 19.

  • 08.10.2014

    Стереофонический регулятор громкости, баланса и тембра на ТСА5550 имеет следующие параметры: Малые нелинейные искажения не более 0,1% Напряжение питания 10-16В (12В номинальное) Ток потребления 15…30мА Входное напряжение 0,5В (коэффициент усиления при напряжении питания 12В единица) Диапазон регулировки тембра -14…+14дБ Диапазон регулировки баланса 3дБ Разница между каналами 45дБ Отношение сигнал шум …

  • 29.09.2014

    Принципиальная схема передатчика показана на рис.1. Передатчик (27МГц) выдает мощность около 0,5Вт. В качестве антенны используется провод 1 м длиной. Передатчик состоит из 3-х каскадов — задающего генератора (VT1), усилителя мощности (VT2) и манипулятора (VT3). Частота задающего генератора задается кв. резонатором Q1 на частоту 27 МГц. Нагружен генератор на контур …

  • 28.09.2014

    Параметры усилителя: Суммарный диапазон воспроизводимых частот 12…20000Гц Максимальная выходная мощность СЧ-ВЧ каналов(Rн=2,7Ом, Uп=14В) 2*12Вт Максимальная выходная мощность НЧ канала(Rн=4Ом, Uп=14В) 24Вт Номинальная мощность СЧ-ВЧ каналов при КНИ 0,2% 2*8Вт Номинальная мощность НЧ канала при КНИ 0,2% 14Вт Максимальный ток потребления 8 А В данной схеме А1 — ВЧ-СЧ усилитель, а …

  • 30.09.2014

    УКВ-приемник работает в диапазоне 64-108МГц. Схема приемника основана на 2-х микросхемах: К174ХА34 и ВА5386, дополнительно в схеме присутствуют 17 конденсаторов и всего 2-а резистора. Колебательный контур один, гетеродинный. На А1 выполнен супергетеродинный УКВ-ЧМ без УНЧ. Сигнал от антенны поступает через С1 на вход ПЧ микросхемы А1(вывод12). Настройка на станцию производится …

На, казалось бы, морально устаревшем контроллере 2051, мы не раз задумывались о том, чтобы собрать похожий измеритель, но на более современном контроллере, чтобы снабдить его дополнительными возможностями. Критерий поисков, в основном, был только один - это широкие диапазоны измерения. Однако, все аналогичные схемы, найденные в интернете, имели даже программное ограничение диапазонов, причём довольно значительное. Для справедливости стоит заметить, что вышеназванный прибор на 2051 вообще не имел ограничений (они были лишь аппаратными), а программно в нём даже были заложены возможности измерения - мега и -гига значений!

Как-то, изучая в очередной раз схемы, мы обнаружили полезнейший прибор - LCM3, обладающий приличным функционалом при небольшом количестве деталей. Прибор умеет в широчайших пределах измерять индуктивность, ёмкость неполярных конденсаторов, ёмкость электролитических конденсаторов, ESR, сопротивления (в том числе - сверхмалые), оценивать качество электролитических конденсаторов. Работает прибор на известном принципе измерения частоты, однако интересен тем, что генератор собран на встроенном в микроконтроллер PIC16F690 компараторе. Возможно, параметры этого компаратора не хуже, чем у LM311, ведь заявленные диапазоны измерений таковы:

  • ёмкость 1пФ - 1нФ с разрешением 0,1пФ и точностью 1%
  • ёмкость 1нФ - 100нФ с разрешением 1пФ и точностью 1%
  • ёмкость 100нФ - 1мкФ с разрешением 1нФ и точностью 2,5%
  • ёмкость электролитических конденсаторов 100нФ - 0,1Ф с разрешением 1нФ и точностью 5%
  • индуктивность 10нГн - 20Гн с разрешением 10нГн и точностью 5%
  • сопротивление 1мОм - 30Ом с разрешением 1мОм и точностью 5%
Более подробно ознакомиться с описанием прибора на венгерском можно на странице:

Применённые в измерителе решения нам понравились, и мы решили не собирать новый прибор на атмеловском контроллере, а применить PIC. От этого венгерского измерителя была взята частично (а затем - и полностью) схема. Затем была декомпилирована прошивка, и на её основе написана новая, под собственные нужды. Однако, авторская прошивка настолько хороша, что с ней прибор, наверное, не имеет аналогов.

Нажмите для увеличения
Особенности измерителя LCM3:

  • при включении прибор должен находиться в режиме измерения ёмкости (если же он находится в режиме измерения индуктивности, то соответствующей надписью на экране попросит перевести с другой режим)
  • танталовые конденсаторы должны быть с возможно меньшим ESR (менее 0,5 Ом). ESR конденсатора CX1 33нФ также должен быть низким. суммарный импеданс этого конденсатора, индуктивности и кнопки переключения режимов не должен превышать 2,2 Ом. Качество этого конденсатора вцелом должно быть очень хорошим, он должен иметь малый ток утечки, поэтому стоит выбирать из высоковольтных (например, на 630 вольт) - полипропилен (MKP), стирофлекс-полистирол (KS, FKS, MKS, MKY ?). Конденсаторы C9 и C10, как написано на схеме, - полистирол , слюда, полипропилен. Резистор сопротивлением 180 Ом должен иметь точность 1%, резистор 47 Ом также должен быть 1%.
  • прибор оценивает "качество" конденсатора. точной информации, какие именно параметры рассчитываются, нет. вероятно, это - утечка, тангенс угла потерь диэлектрика, ESR. "качество" отображается в виде закрашенного стаканчика: чем меньше он заполнен, тем лучше конденсатор. у неисправного конденсатора стаканчик закрашен полностью. однако, такой конденсатор можно применять в фильтре линейного стабилизатора.
  • дроссель, используемый в приборе, должен быть достаточно габаритным (выдерживать ток не менее 2А без насыщения) - в виде "гантельки" или на броневом сердечнике.
  • иногда при включении прибор выдаёт на экране "Low Batt". при этом нужно отключить и снова включить питание (вероятно, глюк).
  • имеется несколько версий прошивки данного прибора: 1.2-1.35, причём последняя, по словам авторов, оптимизирована для дросселя на броневом сердечнике. однако, на дросселе в виде гантельки она также работает и только в этой версии оценивается качество электролитических конденсаторов.
  • к прибору возможно подключить небольшую приставку для внутрисхемного (без выпаивания) измерения ESR электролитических конденсаторов. Она понижает напряжение, прилагаемое к проверяемому конденсатору, до 30мВ, при котором полупроводники не открываются и не влияют на измерение. Схему можно найти на авторском сайте.
  • Режим измерения ESR включается автоматически перетыканием щупов в соответствующее гнездо. Если при этом вместо электролитического конденсатора будет подключен резистор (до 30 Ом), то прибор автоматически переключится в режим измерения малых сопротивлений.
Калибровка в режиме измерения ёмкости:
  • нажать кнопку калибровки
  • отпустить кнопку калибровки
Калибровка в режиме измерения индуктивности:
  • замкнуть щупы прибора
  • нажать кнопку калибровки
  • дождаться появления сообщения R=....Ом
  • отпустить кнопку калибровки
  • дождаться сообщения об окончании калибровки
Калибровка в режиме измерения ESR:
  • замкнуть щупы прибора
  • нажать кнопку калибровки, на экране будут отображены напряжение, прилагаемое к измеряемому конденсатору (рекомендуемые значения - 130...150 мВ, завитит от дросселя, который нужно размещать подальше от металлических поверхностей) и частота измерения ESR
  • дождаться сообщения R=....Ом
  • отпустить кнопку калибровки
  • показания сопротивления на экране должны стать нулевыми
Реализована также возможность указать ёмкость калибровочного конденсатора вручную. Для этого собирается следующая схема и подключается к разъёму программирования (схему можно и не собирать, а просто замыкать нужные контакты):


Затем:

  • подключить схему (либо замкнуть vpp и gnd)
  • включить прибор и нажать кнопку калибровки, при этом на экране появится значение калибровочной ёмкости
  • кнопками DN и UP скорректировать значения (возможно, в разных версиях прошивки для ускоренной корректировки работают основные кнопки calibrate и mode)
  • в зависимости от версии прошивки, возможен и другой вариант: после нажатия кнопки калибровки, на экране появляется значения калибровочной ёмкости, которое начинает расти. Когда доходит до нужного значения, нужно остановить рост кнопкой mode и разомкнуть vpp и gnd. Если же не успели вовремя остановить и перескочили нужное значение, то кнопкой калибровки можно его уменьшить
  • отключить схему (либо разомкнуть vpp и gnd)
Авторская прошивка v1.35: lcm3_v135.hex

Печатная плата: lcm3.lay (один из вариантов с форума vrtp).

На прилагаемой печатной плате контрастность дисплея 16*2 задаётся делителем напряжения на резисторах сопротивлением 18к и 1к. При необходимости нужно подобрать сопротивление последнего. FB - ферритовый цилиндрик, вместо него можно поставить дроссель. Для большей точности вместо резистора 180 Ом используются два по 360 в параллель. Перед установкой кнопки калибровки и переключателя режимов измерения, обязательно проверьте тестером их распиновку: часто встречается такая, которая не подходит.


Корпус для прибора, следуя традиции (раз , два), сделан из пластмассы и окрашен краской "чёрный металлик". Изначально прибор питался от зарядного устройства для мобильного телефона 5В 500мА через гнездо mini-USB. Это - не лучший вариант, так как питание подключалось к плате измерителя уже после стабилизатора, а насколько оно стабильно в зарядке от телефона - неизвестно. Затем внешнее питание было заменено на литиевый аккумулятор с модулем зарядки и повышающим преобразователем , возможные помехи от которого прекрасно убираются обычным LDO стабилизатором , присутствующим на схеме.


В заключение хочется добавить, что автор вложил в этот измеритель максимум возможностей, сделав его незаменимым для радиолюбителя.

Этот прибор измерительной лаборатории с достаточной для радиолюбительской практики точностью позволяет измерять: сопротивление резисторов-от 10 Ом до 10 МОм, емкость конденсаторов - от 10 пФ до 10 мкФ, индуктивность катушек и дросселей- от 10 ..20 мкГн до 8… 10 мГн. Метод измерения - мостовой. Индикация балансировки измерйтельного моста - звуковая с помощью головных телефонов. Точность измерений во многом зависит от тщательности подбора образцовых деталей и градуировки шкалы.

Принципиальная схема прибора изображена на рис. 53. Измеритель состоит из простейшего реохордного измерительного^ моста, генератора электрических колебаний звуковой частоты и усилителя тока. Питается прибор постоянным ♦напряжением 9 В, снимаемым с нерегулируемого выхода блока питания лаборатории. Прибор можно питать и от автономного источника, например батареи «Крона», аккумуляторной батареи 7Д-0,115 или двух соединенных последовательно батарей 3336J1. Прибор сохраняет работоспособность при снижении напряжения питания до 3… 4,5 В, однако громкость сигнала в телефонах, особенно при измерении небольших емкостей, в этом случае заметно падает.

Генератор, питающий измерительный мост, представляет собой симметричный мультивибратор на транзисторах VT1 и VT2. Конденсаторы С1 и С2 создают между коллекторными и базовыми цепями транзисторов положительную -обратную связь по переменному току, благодаря чему мультивибратор самовозбуждается и генерирует электрические колебания, близкие по форме к прямоугольным. Резисторы и конденсаторы мультивибратора подобраны таким образом, что он генерирует колебания частотой около 1000 Гц. Напряжение такой частоты воспроизводится телефонами (или динамической головкой) примерно как звук «си» второй октавы.

Рис. 53. Принципиальная схема измерителя RCL

Электрические ’колебания мультивибратора усиливаются усилителем на транзисторе VT3 и с его нагрузочного резистора R5 поступают в диагональ питания измерительного моста. Переменный резистор R5 выполняет функции реохорда. Плечо сравнения образуют образцовые резисторы R6-R8, конденсаторы СЗ-С5 и катушки индуктивности L1 и L2, поочередно включаемые з мост переключателем SA1. Измеряемый резистор R x или катушку индуктивности L x подсоединяют к зажимам ХТ1, ХТ2, а конденсатор С х - к зажимам ХТ2, ХТЗ. Головные телефоны BF1 включают в измерительную диагональ моста через гнезда XS1 и XS2 При любом виде измерений мост балансируют реохордом R5, добиваясь полного пропадания или наименьшей громкости звука в телефонах. Сопротивление R XJ емкость С х или индуктивность L x отсчитывают по шкале реохорда в относительных единицах.

Множители возле переключателя вида и пределов измерений SA1 показывают, на сколько ом, микрогенри. или ликофарад надо умножить отсчитанное по шкале показание, чтобы определить измеряемое сопротивление резистора, емкость конденсатора или индуктивность катушки. Так, например, если при балансе моста считанное со шкалы реохорда показание равно 0,5, а переключатель SA1 находится в положении «ХЮ 4 пФ», то емкость измеряемого конденсатора С х равна 5000 пФ (0,005 мкФ).

Резистор R6 ограничивает коллекторный τόκ транзистора VT3, возрастающий при измерении индуктивности, и тем самым предотвращает возможный тепловой пробой транзистора.

Конструкция и детали. Внешний вид и конструкция прибора показаны на рис. 54. Большая часть деталей размещена на монтажной плате из гетинакса, закрепленной в корпусе на П-образных кронштейнах высотой 35 мм. Под монтажной платой можно установить батарею автономного питания прибора. Переключатель SA1, выключатель питания Q1 и колодка с гнездами XS1, XS2 для подключения головных телефонов закреплены непосредственно на передней стенке корпуса.

Разметка отверстий в передней стенке корпуса показана на рис. 55. Прямоугольное отверстие размерами 30X15 мм в нижней части стенки, предназначено для выступающих вперед зажимов ХТ1-ХТЗ. Такое же отверстие в правой части стенки является «окном» шкалы, круглое отверстие под ним предназначено для валика переменного резистора R5. Отверстие диаметром 12,5 мм предназначено для выключателя питания, функции которого выполняет тумблер ТВ2-1, отверстие диаметром 10,5 мм - для галетного переключателя SA1 на 11 положений (используется только восемь) и одно направление. Пять отверстий диаметром 3,2 мм с зенковкой служат для винтов крепления гнездовой колодки, полочки с зажимами ХТ1-ХТЗ и кронштейна резистора R5, четыре отверстия диаметром 2,2 мм (также с зенковкой) - для заклепок крепления уголков, к которым привинчивают крышку.

Надписи, поясняющие назначение ручек управления, зажимов и гнезд, выполнены на плотной бумаге, которая затем накрывается пластиной из прозрачного органического стекла толщиной 2 мм. Для крепления этой накладки к корпусу использованы гайки выключателя питания Q1, переключателя SA1 и

Рис. 54. Внешний вид и конструкция измерителя RCL

три винта М2Х4, ввинченные в резьбовые отверстия в накладке с внутренней стороны корпуса.

Конструкция зажимов для подключения к прибору резисторов, конденсаторов и катушек индуктивности, параметры которых надо измерить, показана на рис. 56. Каждый зажим состоит из деталей 2 и 3, закрепленных на гетинахсовой плате 1 заклепками 4 Соединительные провода припаивают к монтажным лепесткам 5. Детали зажимов изготавливают из твердой латуни или бронзы толщиной 0,4… 0,5 мм. При работе с прибором нажимают на верхнюю часть детали 2 до совмещения отверстия в ней с отверстиями в нижней части этой же детали и детали 3 и вставляют в них вывод измеряемой детали. Необхо

Рис. 55. Разметка передней стенки корпуса

Рис. 56. Устройство колодки с зажимами для подсоединения выводов радиодеталей:

1-плата; 2, 3 - пружинящие контакты; 4 -заклепки; 5 - монтажный лепесток; 6 - -уголок

Рис. 57. Устройство шкального механизма:

лей желательно проверить на измерительном приборе заводского изготовления.

Образцовая катушка L1, индуктивность которой должна быть равна 100 мкГн, содержит 96 витков провода ПЭВ-1 0,2, намотанного виток к витку на цилиндрическом каркасе внешним диаметром 17,5 мм, или 80 витков такого же провода, намотанного на каркасе диаметром 20 мм. В качестве каркаса можно использовать картонные гильзы патронов для охотничьих ружей 20или 12-го калибра. Каркас катушки насажен на кружок, выпиленный из гетинакса и приклеенный к монтажной плате клеем БФ-2.

Индуктивность образцовой катушки L2 в десять раз больше (1 мГн). Она содержит 210 витков провода ПЭВ-1 0,12, намотанного на унифицированном трехсекционном полистироловом каркасе, и помещена в карбонильный броневой магнитопровод СБ-12а. Ее индуктивность подгоняют подстроечником, входящим в комплект магнитопровода. Последний приклеен к монтажной плате клеем БФ-2.

Индуктивность обеих катушек желательно подогнать до установки в измеритель. Лучше всего это сделать с помощью прибора заводского изготовления. Следует отметить, что если первую катушку изготовить точно по описанию, та она будет иметь близкую к необходимой индуктивность и по ней в собранном измерителе можно будет подогнать индуктивность второй катушки.

Налаживание прибора, градуировка шкалы. Если в измерителе использованы предварительно проверенные и отобранные транзисторы, резисторы и конденсаторы, мультивибратор и усилитель должны нормально работать без какого-либо налаживания. В этом нетрудно убедиться, соединив проволочной перемычкой зажимы ХТ1 и ХТ2 или ХТ2 и ХТЗ. В телефонах должен появиться звук, громкость которого изменяется при перемещении движка реохорда из одного крайнего положения в другое. Если звука нет, значит, допущена ошибка в монтаже мультивибратора или неправильно подключен источник питания.

Желательную высоту (тон) звука в телефонах можно подобрать изменением емкости конденсатора С1 или С2. С уменьшением их емкости высота звука повышается, а с увеличением - понижается.

Рис. 59. Шкала измерителя RCL

Поскольку шкала прибора общая для всех видов и пределов измерений, ее можно отградуировать на одном из пределов’ с помощью магазина сопротивлений. Допустим, что шкала прибора градуируется на поддиапазоне, соответствующем образцовому резистору R8 (10 кОм). Переключатель SA1 в этом случае устанавливают в положение «ХЮ 4 Ом», а к зажимам ХТ1 и ХТ2 подключают резистор сопротивлением 10 кОм. После этого мост балансируют, добиваясь пропадания звука в телефонах, и на шкале реохорда напротив стрелки делают исходную риску с отметкой 1. Она будет соответствовать сопротивлению 10 4 Ом, т. е. 10 кОм. Далее к прибору поочередно подключают резисторы сопротивлением 9, 8, 7 кОм и т. д. и делают на шкале отметки, соответствующие долям единицы. В дальнейшем отметка 0,9 на шкале реохорда при измерении сопротивлений этого поддиапазона будет соответствовать сопротивлению 9 кОм (0,9-10 4 Ом = 9000 Ом=9 кОм), отметка 0,8 - сопротивлению 8 кОм (0,8· 10 4 0м = 8000 Ом=8 кОм) и т. д. Далее к прибору подключают резисторы сопротивлением 15, 20, 25 кОм и т. д. и на шкале реохорда делают соответствующие отметки (1,5; 2; 2,5 и т. д). В результате получится шкала, образец которой показан на рис. 59.

Отградуировть шкалу можно также с помощью набора резисторов с допускаемым отклонением от номиналов не более ±5%. Соединяя резисторы параллельно или последовательно, можно получать практически любые значения «образцовых» резисторов.

Отградуированная таким способом шкала пригодна для других видов и пределов измерений только в том случае, если соответствующие им образцовые резисторы, конденсаторы и катушки индуктивности будут иметь параметры, указанные на принципиальной схеме прибора.

Пользуясь прибором, надо помнить, что при измерении емкости оксидных конденсаторов (вывод их положительной обкладки подключают к зажиму ХТЗ) баланс моста ощущается не так четко, как при измерении сопротивлений, поэтому и точность измерений в этом случае меньше. Объясняется такое явление утечкой тока, свойственной оксидным конденсаторам.

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов.
Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штеккера, резистор, провода и щупы).

Download the single-frequency version - Скачать программу v1.11 (архив 175 кБ, одна рабочая частота).
Download the double-frequency version - Скачать программу v2.16 (архив 174 кБ, две рабочих частоты).

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцовогоо) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ - быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

  • по R - 0.01 ом... 3 Мом,
  • по L - 100 нГн... 100 Гн,
  • по C - 10 пФ... 10 000 мкФ (для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает - пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов. Здесь можно порекомендовать такую методику настройки:

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой - за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса - в среднее положение.
2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».
3. Исключить прегрузку по входу - регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение - 70...90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.
4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

Требования к системе

  • ОС семейства Windows (тестировалась под Windows XP),
  • поддержка звука 44,1 ksps, 16 bit, stereo,
  • наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

Особенности измерений, или чтобы не попасть впростак

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний - с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае - земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта - 100 ом против долей ома.

И последнее. Если измеряемый компонет - конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае - сам компьютер. Сказанное относится и к тестированию компонетов в устройстве, тем более - необесточенном.