Основное уравнение динамики вращательного движения. Динамика вращательного движения твердого тела (2) - Лекция Сила трения при вращательном движении

Рассмотрев поступательное и вращательное движения можно установить аналогию между ними. В кинематике поступательного движения используются путь s , скорость и ускорение а . Их роль во вращательном движении играют угол поворота , угловая скорость  и угловое ускорение ε. В динамике поступательного движения применяются понятия силы , массыт и импульса Во вращательном движении роль силы играет момент
силы, роль массы - момент инерцииI z и роль импульса - момент импульса Зная формулы поступательного движения легко записать формулы вращательного движения. Например, при равномерном движении пройденный путь вычисляется по формуле:s = t , а при вращательном угол поворота - по формуле  = t . Второй закон Ньютона
и
а основной закон динамики вращательного движения -
и
При поступательном движении импульс тела равен
а при вращательном движении момент импульса -
Эту аналогию можно продолжать и дальше.

Работа силы при поступательном движении. Мощность

Пусть тело (материальная точка) под действием постоянной силы , составляющей неизменный уголс направлением перемещения, движется прямолинейно в некоторой системе отсчёта и проходит путьl . Тогда, как известно из школьного курса физики, работаA этой силы находится по формуле:

A = Fl · cos  = F l l , (1)

Рассмотрим теперь общий случай вычисления работы, когда тело движется поступательно по криволинейной траектории под действием переменной силы. На пути l выделим элементарный участок dl , в пределах которого можно считать силу и угол неизменными величинами, а сам участок - прямолинейным. Тогда работу dA на этом участке найдём, используя формулу (1): dA = F · dl · cos. Работа A на всём пути равна сумме работ dA , т.е.

(2)

Значок l при интеграле означает, что интегрирование производится по всему пути l .

Формуле (2) можно придать иной вид, если воспользоваться скалярным произведением векторов. Тогда подынтегральное выражение dA запишется в виде:dA = F · dl · cos=
где - вектор элементарного перемещения, и

(3)

Из формулы (1) видно, что работа является алгебраической величиной. Знак работы зависит от угла . Если угол  острый, то cos  > 0 и работа положительная, если же угол  тупой - отрицательная.

В системе единиц СИ единицей работы является джоуль (Дж). Она вводится из формулы (1), в которой полагают cos  = 1. 1 Дж - это работа, которую совершает сила в 1 Н на пути 1 м при условии совпадения направлений силы и перемещения .

Для характеристики быстроты совершения работы вводится понятие мощности, равной работе, совершённой в единицу времени. Если элементарный промежуток времени dt совершается элементарная работа dA , то мощность Р равна

(4)

В системе единиц СИ мощность измеряется в ваттах (Вт). Как следует из (4), 1 Вт = 1 Дж / 1 с, т.е. 1 Вт - это мощность, при которой за 1 с совершается работа в 1 Дж.

Работа силы при вращательном движении

Рассмотрим твёрдое тело, которое под действием переменной силы поворачивается вокруг осиz на некоторый угол. Эта сила создаёт момент силМ z , вращающий тело. Сила направлена по касательной к окружности, по которой движется точка приложения силы. Поэтому угол= 0. Учитывая это, по аналогии с формулой механической работы (см. (2)), находим выражение, по которому вычисляется работа при вращательном движении:

(5)

Работа будет положительной, если направление касательной составляющей силы совпадает с направлением вращения, и отрицательной - при их противоположном направлении.

4.6 Вращательное движение твердого тела. Момент силы.

Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки, лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее, рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси .

Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси OO’ (рис. 46). Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения.

Безусловно, движение точки подчиняется уравнению второго закона Ньютона \(~m \vec a = \vec F_0\). Однако, непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку – сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.

Пусть в некоторый момент времени на материальную точку действует некоторая сила \(~\vec F\), лежащая в плоскости перпендикулярной оси вращения (рис. 47). При кинематическом описании криволинейного движения вектор полного ускорения \(~\vec a\) удобно разложить на две составляющих: нормальную \(~\vec a_n\), направленную к оси вращения, и тангенциальную \(~\vec a_{\tau}\) , направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых неизвестная сила натяжения стержня.

Запишем уравнение второго закона в проекции на тангенциальное направление:

\(~m a_{\tau} = F_{\tau}\) , (1)

заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью \(~\omega = \frac{\Delta \varphi}{\Delta t}\) , изменение которой в свою очередь описывается угловым ускорением \(~\varepsilon = \frac{\Delta \omega}{\Delta t}\) . Угловое ускорение связано с тангенциальной составляющей ускорения соотношением a τ = . Если подставить это выражение в уравнение (9), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r

\(~m r^2 \varepsilon = F_{\tau} r\) . (2)

и рассмотрим выражение в его правой части F τ r , имеющего смысл произведения тангенциальной составляющей силы, на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить несколько иной форме (см. рис. 48)

M = F τ r = Fr cos α = Fd , здесь d - расстояние от оси вращения до линии действия силы, которое также называют плечом силы . Эта физическая величина, произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) M = Fd называется моментом силы . Действие силы может приводить к вращению, как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому она не влияет на вращение тела.

Запишем еще одно полезное выражения для момента силы. Пусть сила \(~\vec F\) приложена к точке А , декартовые координаты которой равны x ,y (рис. 49). Разложим силу \(~\vec F\) на две составляющие \(~\vec F_x, \vec F_y\) , параллельные соответствующим осям координат. Момент силы \(~\vec F\) относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих \(~\vec F_x, \vec F_y\) , то есть M = xF y - yF x .

Аналогично, тому, как нами было введено понятие вектора угловой скорости, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения. Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

\(~\vec M = \vec r \times \vec F\) .

Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.

Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения mr 2 = I (эта величина называется моментом инерции материальной точки относительно оси ). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения

\(~I \varepsilon = M\) . (3)

Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, именно он определяет изменение угловой скорости. Оказывается, (и это подтверждает наш повседневный опыт) влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком – показывает, легко ли раскрутить тело) - чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.

Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому, аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I - момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M - сумма моментов внешних сил, действующих на тело.

Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 51), и суммированию моментов инерций этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения

\(~I = m_1 r^2_1 + m_2 r^2_2 + m_3 r^2_3 + \ldots\) .

Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра массы m и радиуса R для оси вращения совпадающей с осью цилиндра равен \(~I = \frac{1}{2} m R^2\) .

Эта тема будет посвящена рассмотрению особого вида сил – сил инерции. Особенность этих сил состоит в следующем. Все механические силы – будь то силы гравитационного, упругого взаимодействия или силы трения – возникают тогда, когда на тело имеет место воздействие со стороны других тел. С силами инерции дело обстоит иначе.

Для начала вспомним, что такое инерция. Инерция – это физическое явление, состоящее в том, что тело всегда стремится сохранить свою первоначальную скорость. И силы инерции возникают тогда, когда у тела изменяется скорость – т.е. появляется ускорение. В зависимости от того, в каком движении принимает участие тело, у него возникает то или иное ускорение, и оно порождает ту или иную силу инерции. Но все эти силы объединяет одна и та же закономерность: сила инерции всегда направлена противоположно ускорению ее породившему.

По своей природе силы инерции отличаются от других механических сил. Все остальные механические силы возникают в результате воздействия одного тела на другое. Тогда как силы инерции обусловлены свойствами механического движения тела. Кстати, в зависимости от того, в каком движении участвует тело, возникает та или иная сила инерции:

Движение может быть прямолинейным, и тогда речь пойдет о силе инерции поступательного движения;

Движение может быть криволинейным, и тогда речь пойдет о центробежной силе инерции;

Наконец, движение может быть одновременно и прямо-, и криволинейным (если тело перемещается во вращающейся системе или перемещается, вращаясь), и тогда речь пойдет о силе Кориолиса.

Рассмотрим подробнее виды сил инерции и условия их возникновения.

1. СИЛА ИНЕРЦИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯF i . Она возникает, когда тело движется по прямолинейной траектории. Мы постоянно сталкиваемся с действием этой силы в транспорте, движущемся по прямой дороге, при торможении и при наборе скорости. При торможении нас бросает вперед, т.к. скорость движения резко уменьшается, а наше тело старается сохранить ту скорость, которая у него была. При наборе скорости нас вдавливает в спинку сидения по той же причине. На рис. 2.1

Изображены направления ускорения и силы инерции поступательного движения в случае уменьшения скорости: ускорение направлено противоположно движению, а сила инерции направлена противоположно ускорению. Формула силы инерции задается вторым законом Ньютона: . Знак «минус» обусловлен тем, что векторы и имеют противоположные направления. Численное значение (модуль) этой силы соответственно вычисляется по формуле:

F = ma (3.1)

2. ЦЕНТРОБЕЖНАЯ СИЛА ИНЕРЦИИF i . Чтобы понять, как возникает эта сила, рассмотрим рис. 3.2, на котором изображен диск, вращающийся в горизонтальной плоскости, с шариком, прикрепленным к центру диска посредством растяжимой связи (например, резинки). Когда диск начинает вращаться, шарик стремится удалиться от


центра и натягивает резинку. Причем чем быстрее вращается диск, тем дальше удаляется шарик от центра диска. Такое перемещение шарика по плоскости диска обусловлено действием силы, которая называется центробежной силой инерции (F цб) . Таким образом, центробежная сила возникает при вращении и направлена вдоль радиуса от центра вращения.F цб является силой инерции, а значит ее возникновение обусловлено наличием ускорения, которое должно быть направлено противоположно этой силе. Если центробежная сила направлена от центра, то очевидно, что причиной возникновения этой силы является нормальное (центростремительное) ускорение а n , ведь именно оно направлено к центру вращения (см. Тема 1, §1.2, п.3). Исходя из этого, получаем формулу центробежной силы. Согласно второму закону Ньютона F=ma , где m – масса тела. Тогда для центробежной силы инерции справедливо соотношение:

F цб = ma n .

Учитывая (1.18) и (1.19), получаем:

(3.2) и F цб = mω 2 r (3.3).

3. СИЛА КОРИОЛИСА F K . При совмещении двух видов движения: вращательного и поступательного – появляется еще одна сила, называемая силой Кориолиса (или кориолисовой силой) по имени французского механика Густава Гаспара Кориолиса (1792-1843), который дал расчет этой силы.

Появление кориолисовой силы можно обнаружить на примере опыта, изображенного на рис. 3.3. Ни нем изображен диск, вращающийся в горизонтальной

Рис. 3.3 вид сверху

плоскости. Прочертим на диске радиальную прямую ОА и запустим в направлении от О к А шарик со скоростью υ. Если диск не вращается, шарик будет катиться вдоль прочерченной нами прямой. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться вдоль изображенной пунктиром кривой ОВ, причем его скорость υ будет изменять свое направление (см. рис.3.3 (б)). Следовательно, по отношению ко вращающейся системе отсчета (а в данном случае это диск) шарик ведет себя так, как если бы на него действовала некая сила, перпендикулярная скорости υ. Это и есть сила Кориолиса F K . Именно она заставляет шарик отклоняться от прямолинейной траектории ОА. Формула, которая описывает эту силу определяется опять же вторым законом Ньютона, только на этот раз в качестве ускорения выступает так называемое кориолисово ускорениеа К : ,F K =2mυω (3.5).

Итак, как уже было сказано, чтобы сила Кориолиса проявила себя, необходимо совместить 2 вида движения. И здесь возможны два варианта: 1). Тело движется относительно вращающейся системы отсчета. Именно этот случай изображен на рис.3.3. 2). Вращающееся тело совершает поступательное движение В качестве примера можно рассматривать так называемые «крученые» мячи – прием, используемый в футболе – когда удар по мячу осуществляется так, что он во время полета вращается.

«Физика - 10 класс»

Угловое ускорение.


Ранее мы получили формулу, связывающую линейную скорость υ, угловую скорость ω и радиус R окружности, по которой движется выбранный элемент (материальная точка) абсолютно твёрдого тела, которое, вращается относительно неподвижной оси:

Мы знаем, что линейные скорости и ускорения точек твёрдого тела различны. В то же время угловая скорость всех точек твёрдого тела одинакова.

Угловая скорость - векторная величина. Направление угловой скорости определяется по правилу буравчика. Если направление вращения ручки буравчика совпадает с направлением вращения тела, то поступательное движение буравчика указывает направление вектора угловой скорости (рис. 6.1).

Однако равномерное вращательное движение встречается довольно редко. Гораздо чаще мы имеем дело с движением, при котором угловая скорость изменяется, очевидно, это происходит в начале и конце движения.

Причиной изменения угловой скорости вращения является действие на тело сил. Изменение угловой скорости со временем определяет угловое ускорение .

Bектор угловой скорости - это скользящий вектор. Независимо от точки приложения его направление указывает направление вращения тела, а модуль определяет быстроту вращения,

Среднее угловое ускорение равно отношению изменения угловой скорости к промежутку времени, за которое это изменение произошло:

При равноускоренном движении угловое ускорение постоянно и при неподвижной оси вращения характеризует изменение угловой скорости по модулю. При увеличении угловой скорости вращения тела угловое ускорение направлено в ту же сторону, что и угловая скорость (рис. 6.2, а), а при уменьшении - в противоположную (рис. 6.2, б).

Так как угловая скорость связана с линейной скоростью соотношением υ = ωR, то изменение линейной скорости за некоторый промежуток времени Δt равно Δυ =ΔωR. Разделив левую и правую части уравнения на Δt, имеем или а = εR, где а - касательное (линейное) ускорение , направленное по касательной к траектории движения (окружности).

Если время измерено в секундах, а угловая скорость - в радианах в секунду, то одна единица углового ускорения равна 1 рад/с 2 , т. е. угловое ускорение выражается в радианах на секунду в квадрате.

Неравномерно движутся при запуске и остановке любые вращающиеся тела, например ротор в электродвигателе, диск токарного станка, колесо автомобиля при разгоне и др.


Момент силы.


Для создания вращательного движения важно не только значение силы, но также и точка её приложения. Отворить дверь, оказывая давление около петель, очень трудно, в то же время вы легко её откроете, надавливая на дверь как можно дальше от оси вращения, например на ручку. Следовательно, для вращательного движения существенно не только значение силы, но и расстояние от оси вращения до точки приложения силы. Кроме этого, важно и направление приложенной силы. Можно тянуть колесо с очень большой силой, но так и не вызвать его вращения.

Момент силы - это физическая величина, равная произведению силы на плечо:

M = Fd,
где d - плечо силы, равное кратчайшему расстоянию от оси вращения до линии действия силы (рис. 6.3).

Очевидно, что момент силы максимален, если сила перпендикулярна радиус-вектору, проведённому от оси вращения до точки приложения этой силы.

Если на тело действует несколько сил, то суммарный момент равен алгебраической сумме моментов каждой из сил относительно данной оси вращения.

При этом моменты сил, вызывающих вращение тела против часовой стрелки, будем считать положительными (сила 2), а моменты сил, вызывающих вращение по часовой стрелке, - отрицательными (силы 1 и 3) (рис. 6.4).

Основное уравнение динамики вращательного движения. Подобно тому как опытным путём было показано, что ускорение тела прямо пропорционально действующей на него силе, было установлено, что угловое ускорение прямо пропорционально моменту силы:

Пусть на материальною точку, движующуюся по окружности, действует сила (рис. 6.5). Согласно второму закону Ньютона в проекции на касательное направление имеем mа к = F к. Умножив левую и правую части уравнения на r, получим ma к r = F к r, или

mr 2 ε = М. (6.1)

Заметим, что в данном случае r - кратчайшее расстояние от оси вращения до материальной точки и соответственно точки приложения силы.

Произведение массы материальной точки на квадрат расстояния до оси вращения называют моментом инерции материальной точки и обозначают буквой I.

Таким образом, уравнение (6.1) можно записать в виде I ε = М, откуда

Уравнение (6.2) называют основным уравнением динамики вращательного движения .

Уравнение (6.2) справедливо и для вращательного движения твёрдого тела , имеющего неподвижную ось вращения, где I - момент инерции твёрдого тела, а М - суммарный момент сил, действующих на тело. В этой главе при расчёте суммарного момента сил мы рассматриваем только силы или их проекции, принадлежащие плоскости, перпендикулярной оси вращения.

Угловое ускорение, с которым вращается тело, прямо пропорционально сумме моментов сил, действующих на него, и обратно пропорционально моменту инерции тела относительно данной оси вращения.

Если система состоит из набора материальных точек (рис. 6.6), то момент инерции этой системы относительно данной оси вращения ОО" равен сумме моментов инерции каждой материальной точки относительно этой оси вращения: I = m 1 r 2 1 + m 2 r 2 2 + ... .

Момент инерции твёрдого тела можно вычислить разделив тело на малые объёмы, которые можно считать материальными точками, и просуммировать их моменты инерции относительно оси вращения. Очевидно, что момент инерции зависит от положения оси вращения.

Из определения момента инерции следует, что момент инерции характеризует распределение массы относительно оси вращения.

Приведём значения моментов инерции для некоторых абсолютно твёрдых однородных тел массой m.

1. Момент инерции тонкого прямого стержня длиной l относительно оси, перпендикулярной к стержню и проходящей через его середину (рис. 6.7), равен:

2. Момент инерции прямого цилиндра (рис. 6.8), или диска относительно оси ОО", совпадающей с геометрической осью цилиндра или диска:

3. Момент инерции шара

4. Момент инерции тонкого обруча радиусом R относительно оси, проходящей через его центр:

Момент инерции по физическому смыслу во вращательном движении играет роль массы, т. е. он характеризует инертность тела по отношению к вращательному движению. Чем больше момент инерции, тем сложнее тело заставить вращаться или, наоборот, остановить вращающееся тело.

Момент силыF , действующей на тело, относительно оси вращения

,

где
- проекция силы F на плоскость, перпендикулярную оси вращения; l - плечо силы F (кратчайшее расстояние от оси вращения до линии действия силы).

Момент инерции относительно оси вращения:

а) материальной точки

J = mr 2 ,

где т - масса точки; r - расстояние ее от оси вращения;

б) дискретного твердого тела

где
- масса i-го элемента тела; r i - расстояние этого элемента от оси вращения; п - число элементов тела;

в) сплошного твердого тела

Если тело однородно, т. е. его плотность одинакова по всему объему, то

dm = dV и

где V - объем тела.

Моменты инерции некоторых тел правильной геометрической формы:

Ось, относительно которой определяется момент инерции

Формула момента инерции

Однородный тонкий стержень массой т и длиной l

Тонкое кольцо, обруч, труба радиусом R и массой т, маховик радиусом R и массой т, распределенной по ободу

Круглый однородный диск (цилиндр) радиусом R и массой т Однородный шар массой т и радиусом R

Проходит через центр тяжести стержня перпендикулярно стержню

Проходит через конец стержня перпендикулярно стержню

Проходит через центр перпендикулярно плоскости основания

Проходит через центр диска перпендикулярно плоскости основания

Проходит через центр шара

1/12ml 2

Теорема Штейнера. Момент инерции тела относительно произвольной оси

J = J 0 + ma 2 ,

где J 0 - момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно заданной оси; а - расстояние между осями; m - масса тела.

Момент импульса вращающегося тела относительно оси

L = J
.

Закон сохранения момента импульса

где L i - момент импульса i-го тела, входящего в состав системы. Закон сохранения момента импульса для двух взаимодействующих тел

где
- моменты инерции и угловые скорости тел до взаимодействия:
- те же величины после взаимодействия.

Закон сохранения момента импульса для одного тела, момент инерции которого меняется,

где
- начальный и конечный моменты инерции;
- начальная и конечная угловые скорости тела.

Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси

M dt =d(J), где М - момент силы, действующей на тело в течение времени dt ;

J - момент инерции тела;
- угловая скорость; J - момент импульса.

Если момент силы и момент инерции постоянны, то это уравнение записывается в виде

М t =J
.

В случае постоянного момента инерции основное уравнение динамики вращательного движения принимает вид

M =J , где - угловое ускорение.

Работа постоянного момента силы М, действующего на вращающееся тело,

где  - угол поворота тела.

Мгновенная мощность, развиваемая при вращении тела,

N = M
.

Кинетическая энергия вращающегося тела

T =1/2 J .

Кинетическая энергия тела, катящегося по плоскости без скольжения,

T== 1 / 2 mv 2 + l / 2 J ,

где l / 2 mv 2 - кинетическая энергия поступательного движения тела; v - скорость центра инерции тела; l / 2 J ,- кинетическая энергия вращательного движения тела вокруг оси, проходящей через центр инерции.

Работа, совершаемая при вращении тела, и изменение кинетической энергии его связаны соотношением