Преобразователь напряжения на трех трансформаторах. Повышающие трансформаторные преобразователи напряжения большой мощности. Итак, для сборки преобразователя нам понадобится

Повышающие трансформаторные преобразователи напря­жения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сете­вой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повы­шенного напряжения используют автогенераторные преобразо­ватели или трансформаторнью преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора , преобразующего постоянное напряжение 12 Б в перемен­ное 220 В, показан на рис. 10.1. Преобразователь работает на по­вышенной частоте преобразования - 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для пи­тания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность - до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (бо­лее 10 кГц).

Для трансформатора Т1 использован магнитопровод транс­форматора кадровой развертки (ТВК). Все его обмотки перемо­таны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6…0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16…0,2; обмотка IV - 1000 витков такого же провода. Намотка обмоток I и II ве­дется одновременно в два провода виток к витку. Обмотка III

Рис. 10.1. Схема преобразователя напряжения средней мощности

Рис. 10.2. Схема мощного преобразователя напряжения

наматывается также виток к витку. Обмотка IV - внавал равно­мерно по каркасу.

Повышающий трансформаторный преобразователь напря­жения аккумулятора (рис. 10.2) позволяет получить на выходе на­пряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5A[^ 0.2].

В основе устройства - задающий генератор прямоуголь­ных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая часто­та этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мульти­вибратора подключены двухкаскаднью усилители мощности, по­зволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходнью транзи­сторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифи-цированнью трансформаторы типа ТАН или Г/7/7. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и VT3 - КТ814, КТ816, КТ837; диоды VD1 и VD2 - Д226.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Бт . Максимальная выходная мощность преобразователя - 100 Вт, КПД -до 50%.

Рис. 10.4. Схема простого преобразователя напряжения

Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах VT2 и VT3 {КТ815). Выходные каскады преобразователя собраны на составных транзисторах VT1 и VT4 {КТ825). Эти транзисторы установлены без изолирующих прокладок на общий радиатор.

Устройство потребляет от аккумулятора ток до 20 Л.

В качестве силового использован готовый сетевой транс­форматор на 100 Вт (сечение центральной части железного сер­дечника - около 10 cм^). У него должны быть две вторичные обмотки, рассчитанные на 8 Б/10 Л каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности рабо­тает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц . Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 - также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков про­вода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 cм^. Сильноточные токовводы должны иметь сечение не менее 4 мм^.

Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6) . Оно потребляет под нагрузкой ток около 2,5 у4.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триг­гере DDI.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах VT3, VT4, нагруженный на трансформатор Т1. За­дающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 S. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразова­теля. Микросхема DDI К561ТМ2 {564ТМ2) и транзисторы предва­рительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной часто­той около 50 Гц.

Рис. 10.5. Схема преобразователя напряжения повышенной мощности

Рис. 10.6. Схема преобразователя напряжения для питания электробритвы

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30…50 Вт. Все ранее су­ществовавшие вторичнью обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим ко­эффициенту трансформации около 20 по отношению к остав­ленной обмотке на 220 В. Если число витков вьюоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до полу­чения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Ка-равкиным . Усовершенствования коснулись только задаю­щего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.8) при подключении к автомобильному аккуму­лятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2…3 часов . Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (VT3 - VT8), коммутирующие ток в первичной обмотке

Рис. 10.7. Вариант схемы задающего генератора для преобразо­вателя напряжения

Рис. 10.8. Схема преобразователя напряжения на 100 Вт

повышающего трансформатора Т1. Мощные транзисторы VT5 и VT8 защищены от перенапряжений при работе без нагрузки дио­дами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низ­ковольтные обмотки Г и I" имеют по 28 витков провода ПЭЛ диа­метром 2,1 мм, а повышающая обмотка II - 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются ми­нимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9 . Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 - R3 и кон­денсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DDI К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы - инверторы /СМО/7-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансфор­матор Т1, повышающий импульсное напряжение до 220 В.

Рис. 10.9. Схема преобразователя напряжения на 300 Вт

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюми­ниевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют час­тоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 S, а их частоту следования, рав­ную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоот­воде с площадью около 200 см^. Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить в эмиттерные цепи транзисторов, то транзисторы каждого плеча можно будет установить на общий теплоотвод.

Нагрузку к преобразователю допускается подключать толь­ко после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразовате­ли имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразова­тель , к достоинствам которого можно отнести:

Стабилизированное выходное напряжение;

Возможность регулировки величины выходного напряжения в значительных пределах;

Применение широко распространенных элементов;

Использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10.10. Схема повышающего преобразователя 9…12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока

Преобразователь выполнен на транзисторах VT4 и VT5 по классической схеме Ройера. Его питание осуществляется от регу­лируемого стабилизатора напряжения на транзисторах VT1 - VT3. Следует иметь в виду, что транзисторы VT3 - VT5 обяз^-тельнб должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 - VD2 {КС147А и КС133А) можно за­менить на КС182. Максимальный ток нагрузки - до 100 мА.

!
В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.

Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.


Вот новый преобразователь напряжения, режим его работы - однотактный.


Преобразователь имеет небольшие габариты и достаточно большую мощность.


Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,


так и понизить входное напряжение до требуемого значения.


У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.


Заряжает аккумуляторы, да и использует их для различных других задач.


Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.


От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.


Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В




В случае автора требуется нужен был именно портативный источник различных выходных напряжений.


А таковых в продаже автор не нашел.

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.
Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.


Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.




Это конденсаторы.


На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.


Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.


AKA KASYAN большего и не надо.


Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.






Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.


Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.


В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.


Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.




Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.


Внутренний диаметр 13,59мм.


Толщина 10,33мм.


Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.


Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.


Витков в обмотке десять, оба провода наматываются разом, в одном направлении.


Перед установкой дросселя перемычки заклеиваем капроновым скотчем.


Работоспособность схемы заключается в правильной установке дросселя.




Необходимо правильно припаять выводы обмоток.


Просто установите дроссель, как это показано на фото.








Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.


Ток транзистора не ниже 30А.


Автор использовал транзистор IRFZ44N.


Выходной выпрямитель - это сдвоенный диод YG805C в корпусе TO220.




Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.


В блоках они стоят в выходном выпрямителе.


В одном корпусе - два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3


Его можно заменить на выносной переменный резистор для удобства работы.


Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.


Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.


Если защита от КЗ не нужна, то этот узел просто исключаем.


Еще защита. На входе схемы стоит предохранитель на 10А.


Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.


Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.




Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.




Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.

Является простым повышающим преобразователем, построенным на м/с NE555, которая выполняет здесь функцию генератора импульсов. Выходное напряжение может варьироваться в пределах 110-220В (регулируется потенциометром).

Область применения

Преобразователь идеально подходит для питания ламп часов Nixie или маломощных или усилителей к наушникам, заменив собой классический источник питания высокого напряжения на трансформаторах. Целью создания этого устройства был проект часов на вакуумных индикаторах в котором схема работает как источник питания высокого напряжения. Преобразователь при питании 9 В и потребляет ток порядка 120 мА (при 10 мА нагрузке).

Принцип работы схемы

Как видите, это стандартный преобразователь напряжения повышающего типа. Частота на выходе микросхемы U1 (NE555) определяется номиналами элементов R1 (56k), R3 (10k), С2 (2,2 nF), и составляет около 45 кГц. Выход с генератора непосредственно управляет mosfet транзистором Т1, который переключает ток, протекающий через катушку L1. Во время нормальной работы катушка L1 периодически накапливает и отдает энергию, увеличивая выходное напряжение.

Схема инвертора на 555

Когда транзистор T1 (IRF740) открывается и подаёт на катушку L1 (100 мкГн) питание (ток течет от источника питания к массе — это первый этап. На втором этапе, когда транзистор будет отключен — ток через катушку в соответствии с законом коммутации вызывает увеличение напряжения на аноде диода D1 (BA159) до тех пор, пока он не будет поляризован в направлении проводимости. Происходит разряд катушки в конденсатор C4 (2,2 мкф). Таким образом, напряжение на C4 растет до тех пор, пока напряжение на выходе делителя R5 (220k), P1 (1к) и R6 470R не вырастет до значения около 0,7 В. Это приведет к включению транзистора T2 (BC547) и отключению генератора 555. Когда напряжение на выходе упадет — транзистор Т2 будет закрыт и генератор снова включается. Так выходное напряжение преобразователя регулируется по величине.


Готовая плата для пайки

Конденсатор C1 (470uF) фильтрует напряжение питания схемы. Регулировка выходного напряжения выполняется с помощью потенциометра P1.

Сборка бестрансформаторного преобразователя


Собранный преобразователь 9-150 вольт

Преобразователь можно спаять на печатной плате. Рисунок PDF платы, в том числе в зеркальном отображении и расположение деталей — . Монтаж прост и пайка элементов произвольная. Под микросхему U1 имеет смысл использовать панельку. Устройство следует питать напряжением 9В.

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Купить готовое устройство не составит проблем – в автомагазинах можно найти (импульсные преобразователи напряжения) различной мощности и цены.

Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.

Простой импульсный преобразователь

Схема этого устройства очень проста , а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.

Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решениена выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами . Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.

Читайте так же: Рассказываем про устройство сварочного трансформатора

Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.

Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.

Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей .

Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.

Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.

Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.

Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник . Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.

Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.

Простой инвертор на транзисторах

Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.

Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.

Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.

Усовершенствования схем инверторов

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами . Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Читайте так же: Делаем сварочный полуавтомат своими руками

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече. Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов. В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

На примере последней схемы это будет выглядеть так:

Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас , если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:

Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР : Возьмем реле с напряжением срабатывания (U р) 9 вольт и сопротивлением обмотки (R о) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (U min) , последовательно с обмоткой нужно включить резистор с сопротивлением R н, рассчитываемым из условия равенства U р / R о =(U min — U р)/ R н. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.

Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее: