Чем характеризуется процесс дробления зиготы. Зиготы – это первые клетки новых организмов. Стадии развития зиготы. 60) Полость бластоцисты называется

Антропология и концепции биологии Курчанов Николай Анатольевич

Стадии зиготы и дробления

Стадии зиготы и дробления

Зигота , образующаяся в результате слияния гамет, представляет собой одноклеточную стадию развития многоклеточного организма. Хотя продолжительность этой стадии обычно невелика, удается проследить происходящие в ней цитоморфологические и биохимические изменения. Эти изменения играют важную роль для последующих процессов эмбриогенеза. У ряда животных уже в зиготе начинается синтез белка на и-РНК, образованной еще во время оогенеза.

Дробление представляет собой процесс следующих друг за другом митотических делений, часто неравномерных. Клетки, образующиеся в процессе дробления, называются бластомерами . Заканчивается дробление образованием бластулы , обычно имеющей внутреннюю полость – бластоцель . Характерная особенность периода дробления – отсутствие роста. Хотя зародыш на стадии бластулы может состоять из сотен клеток, его размер не превышает размера зиготы.

В зависимости от типа яиц существует несколько видов дробления и бластул. Выделяют два основных типа яиц.

Гомолецитальные яйца – имеют расположенное в центре ядро и равномерно распределенный в цитоплазме желток.

Телолецитальные яйца – имеют четко выраженную полярность, эксцентричное расположение ядра и неравномерно распределенный в цитоплазме желток.

Гомолецитальные яйца дают обычно бластулы с одинаковыми бластомерами: целобластулу (с полостью) или морулу (без полости). Телолецитальные яйца дают бластулы с неравными бластомерами: амфибластулу (полное дробление) или дискобластулу (частичное дробление). У млекопитающих в результате дробления образуется морула, но затем в ходе полного асинхронного деления бластомеров возникает дополнительная стадия – зародышевой пузырек, или бластоциста .

Данный текст является ознакомительным фрагментом. Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Основы психофизиологии автора Александров Юрий

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

1.2. Стадии фиксации памяти Гипотеза о двух последовательно развивающихся следах. Согласно гипотезе, формирование энграммы осуществляется в два этапа: первый характеризуется неустойчивой формой следа и существует в течение непродолжительного периода. Это этап

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

3. СТАДИИ МЕДЛЕННОГО СНА И БЫСТРЫЙ СОН Основные данные, полученные за годы многочисленных и разнообразных исследований сна, сводятся к следующему. Сон – не перерыв в деятельности мозга, это просто иное состояние. Во время сна мозг проходит через несколько различных фаз,

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Из книги автора

9.2. Происхождение и ранние стадии развития жизни Современная теория происхождения жизни - это теория появления структур, которые, развиваясь и усложняясь, приобретали определенные функциональные свойства. По-видимому, эти свойства могли возникнуть уже на ранних этапах

Из книги автора

Стадии фотосинтеза В процессе фотосинтеза различают две стадии – световую и темновую.Во время световой фазы фотосинтеза энергия Солнца используется для синтеза АТФ и высокоэнергетических переносчиков электронов. Световая энергия, поглощенная любой молекулой


Начало новому организму даёт оплодотворённая яйцеклетка (исключение составляют случаи партеногенеза и вегетативного размножения). Оплодотворение представляет собой процесс слияния двух половых клеток (гамет) друг с другом, в ходе которого осуществляются две разные функции: половая (комбинирование генов двух родительских особей) и репродуктивная (возникновение нового организма). Первая из этих функций включает передачу генов от родителей потомкам, вторая - инициацию в цитоплазме яйцеклетки тех реакций и перемещений, которые позволяют продолжить развитие. В результате оплодотворения в яйцеклетке восстанавливается двойной (2п) набор хромосом. Центросома, внесённая спермием, после удвоения образует веретено деления, и зигота вступает в 1-ю стадию эмбриогенеза - стадию дробления. В результате митоза из зиготы образуются 2 дочерние клетки - бластомеры.

Предзиготный период

Предзиготный период развития связан с образованием гамет (гаметогенез). Образование яйцеклеток начинается у женщин еще до их рождения и завершается для каждой данной яйцеклетки только после ее оплодотворения. К моменту рождения плод женского пола в яичниках содержит около двух миллионов ооцитов первого порядка (это еще диплоидные клетки), и только 350 - 450 из них достигнут стадии ооцитов второго порядка (гаплоидные клетки), превращаясь в яйцеклетки (по одной в течение одного менструального цикла). В отличие от женщин половые клетки в семенниках (яичках) у мужчин начинают образовываться только с началом периода полового созревания. Длительность периода образования сперматозоида составляет примерно 70 суток; на один грамм веса яичка количество сперматозоидов составляет около 100 миллионов в сутки.


Оплодотворение

Оплодотворение - слияние мужской половой клетки (сперматозоида) с женской (яйцом, яйцеклеткой), приводящее к образованию зиготы - нового одноклеточного организма. Биологический смысл оплодотворения состоит в объединении ядерного материала мужской и женской гамет, что приводит к объединению отцовских и материнских генов, восстановлению диплоидного набора хромосом, а также активации яйцеклетки, то есть стимуляции её к зародышевому развитию. Соединение яйцеклетки со сперматозоидом обычно происходит в воронкообразно расширенной части маточной трубы в течение первых 12 часов после овуляции.

Семенная жидкость, попадая во влагалище женщины при половом сношении, обычно содержит от 60 до 150 млн. сперматозоидов, которые, благодаря движениям со скоростью 2-3 мм в минуту, постоянным волнообразным сокращениям матки и труб и щелочной среде, уже спустя 1-2 минуты после полового акта достигают матки, а через 2-3 часа - концевых отделов маточных труб, где обычно и происходит слияние с яйцеклеткой. Различают моноспермное (в яйцеклетку проникает один сперматозоид) и полиспермное (в яйцеклетку проникают два и более сперматозоидов, но с ядром яйцеклетки сливается только одно ядро сперматозоида) оплодотворение. Сохранению активности спермиев во время прохождения их в половых путях женщины способствует слабощелочная среда шеечного канала матки, заполненного слизистой пробкой. Во время оргазма при половом акте слизистая пробка из шеечного канала частично выталкивается, а затем вновь втягивается в него и тем самым способствует более быстрому попаданию сперматозоидов из влагалища (где в норме у здоровой женщины среда слабокислая) в более благоприятную среду шейки и полости матки. Прохождению сперматозоидов через слизистую пробку шеечного канала способствует и резко повышающаяся в дни овуляции проницаемость слизи. В остальные дни менструального цикла слизистая пробка имеет значительно меньшую проницаемость для сперматозоидов.

Многие сперматозоиды, находящиеся в половых путях женщины, могут сохранять способность к оплодотворению 48-72 часа (иногда даже до 4-5 суток). Овулировавшая яйцеклетка сохраняет жизнеспособность примерно 24 часа. Учитывая это, наиболее благоприятным временем для оплодотворения считается период разрыва созревшего фолликула с последующим рождением яйцеклетки, а также 2-3-й день после овуляции. Женщинам, применяющим физиологический метод контрацепции, следует помнить о том, что сроки овуляции могут колебаться, а жизнеспособность яйцеклетки и сперматозоидов может быть значительно больше. Вскоре после оплодотворения начинается дробление зиготы и образование зародыша.

Зигота

Зигота (греч. zygote соединенная в пару) - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой. Термин ввёл немецкий ботаник Э. Страсбургер.

У человека первое митотическое деление зиготы происходит спустя примерно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому акту дробления. Клетки, образовавшиеся в результате дробления зиготы называют бластомерами. Первые деления зиготы называют "дроблениями" потому, что клетка именно дробится: дочерние клетки после каждого деления становятся всё мельче, а между делениями отсутствует стадия клеточного роста.

Развитие зиготы Зигота либо непосредственно после оплодотворения приступает к развитию, либо одевается плотной оболочкой и на некоторое время превращается в покоящуюся спору (часто называется зигоспорой) - характерно для многих грибов и водорослей.

Дробление

Период эмбрионального развития многоклеточного животного начинается с дробления зиготы и завершается рождением новой особи. Процесс дробления заключается в серии последовательных митотических делений зиготы. Образующиеся в результате нового деления зиготы две клетки и все последующие поколения клеток на этом этапе носят название бластомеров. В ходе дробления одно деление следует за другим, и не происходит роста образующихся бластомеров, вследствие чего каждое новое поколение бластомеров представлено более мелкими клетками. Эта особенность клеточных делений при развитии оплодотворенной яйцеклетки и определила появление образного термина - дробление зиготы.

У разных видов животных яйцеклетки различаются по количеству и характеру распределения в цитоплазме запасных питательных веществ (желтка). Это в значительной степени определяет характер последующего дробления зиготы. При небольшом количестве и равномерном распределении желтка в цитоплазме происходит деление всей массы зиготы с образованием одинаковых бластомеров - полное равномерное дробление (например, у млекопитающих). При скоплении желтка преимущественно у одного из полюсов зиготы происходит неравномерное дробление - образуются бластомеры, различающиеся по размерам: более крупные макромеры и микромеры (например, у амфибий). Если же яйцеклетка очень богата желтком, то дробится ее часть, свободная от желтка. Так, у пресмыкающихся, птиц дроблению подвергается лишь дисковидный участок зиготы у одного из полюсов, где располагается ядро - неполное, дискоидальное дробление. Наконец, у насекомых в процессе дробления задействован лишь поверхностный слой цитоплазмы зиготы - неполное, поверхностное дробление.

В результате дробления (когда число делящихся бластомеров достигает значительного числа) образуется бластула. В типичном случае (например, у ланцетника) бластула представляет собой полый шар, стенка которого образована одним слоем клеток (бластодерма). Полость бластулы - бластоцелъ, иначе называемая первичной полостью тела, заполнена жидкостью. У амфибий бластула имеет очень небольшую полость, а у некоторых животных (например, членистоногих) бластоцель может полностью отсутствовать.

Гаструляция

На следующем этапе эмбрионального периода происходит процесс формирования гаструлы - гаструляция. У многих животных образование гаструлы происходит путем инвагинации, т.е. выпячивания бластодермы на одном из полюсов бластулы (при интенсивном размножении клеток в этой зоне). В результате образуется двуслойный, чашеобразный зародыш. Наружный слой клеток - эктодерма, а внутренний - энтодерма. Внутренняя полость, возникающая при выпячивании стенки бластулы, первичная кишка, сообщается с внешней средой отверстием - первичным ртом (бластопором). Существуют и другие типы гаструляции. Например, у некоторых кишечнополостных энтодерма гаструлы образуется путем иммиграции, т.е. "выселения" части клеток бластодермы в полость бластулы и последующего их размножения. Первичный рот образуется путем разрыва стенки гаструлы. При неравномерном дроблении (у некоторых червей, моллюсков) гаструла образуется в результате обрастания макромеров микромерами и формирования за счет первых энтодермы. Нередко разные способы гаструляции сочетаются.

У всех животных (кроме губок и кишечнополостных - двуслойных животных) этап гаструляции завершается образованием еще одного слоя клеток - мезодермы. Этот "клеточный пласт формируется между энто - и эктодермой. Известно два способа закладки мезодермы. У кольчатых червей, например, в области бластопора гаструлы обособляются две крупные клетки (телобласты). Размножаясь, они дают начало двум мезодермальным полоскам, из которых (отчасти за счет расхождения клеток, отчасти в результате разрушения части клеток внутри мезодермальных полосок) образуются целомические мешки - телобластический способ закладки мезодермы. При энтероцельном способе (иглокожие, ланцетник, позвоночные) в результате выпячивания стенки первичной кишки образуются боковые карманы, которые затем отделяются и становятся целомичес-кими мешками. В обоих случаях закладки мезодермы целомические мешки разрастаются и заполняют первичную полость тела. Мезодермальный слой клеток, выстилающий изнутри полость тела, образует перитонеальный эпителий. Полость, заменившая таким образом первичную, называется вторичной полостью тела, или целомом. В случае телобластического способа закладки мезодермы бластопор превращается в ротовое отверстие взрослого животного. Такие организмы называются первичноротыми. У вторичноротых животных (при энтероцельном способе закладки мезодермы) бластопор зарастает или превращается в анальное отверстие, а рот взрослой особи возникает вторично, путем выпячивания эктодермы.

Образованием трех зародышевых листков (экто-, энто- и мезодермы) завершается этап гаструляции, и с этого момента начинаются процессы гисто - и органогенеза. В результате дифференцировки клеток трех зародышевых листков формируются различные ткани и органы развивающегося организма. Еще в конце прошлого века (во многом благодаря исследованиям И. И. Мечникова и А. О. Ковалевского) было установлено, что у разных видов животных одни и те же зародышевые листки дают одни и те же органы и ткани. Из эктодермы образуются эпидермис со всеми производными структурами и нервная система. За счет энтодермы формируется пищеварительный тракт и связанные с ним органы (печень, поджелудочная железа, легкие и т.п.). Мезодерма образует скелет, сосудистую систему, выделительный аппарат, гонады. Хотя сегодня зародышевые листки и не считаются строго специализированными, тем не менее их гомология у подавляющего большинства видов животных очевидна, что указывает на единство происхождения животного царства.

На протяжении эмбрионального периода происходит нарастание темпов роста и дифференцировки у развивающихся организмов. Если в процессе дробления роста не происходит и бластула (по своей массе) может существенно уступать зиготе, то, начиная с процесса гаструляции, масса зародыша стремительно увеличивается (вследствие интенсивного размножения клеток). Процессы клеточной дифференцировки начинаются на самом раннем этапе эмбриогенеза - дроблении и лежат в основе первичной тканевой дифференцировки - возникновения трех зародышевых листков (эмбриональных тканей). Дальнейшее развитие зародыша сопровождается все усиливающимся процессом дифференцировки тканей и органов. В результате эмбрионального периода развития формируется организм, способный к самостоятельному (более или менее) существованию во внешней среде. Происходит рождение новой особи либо в результате вылупления из яйца (у яйцекладущих животных), либо выхода из тела матери (у живородящих).

Гисто - и органогенез

Гисто - и органогенез зародыша осуществляются в результате размножения, миграции, дифференциации клеток, его составляющих, установление межклеточных контактов и гибели части клеток. 317-й по 20-е сутки продолжается пресомитний период с 20-го дня начинается сомитний период развития. На 20-е сутки эмбриогенеза путем образования туловищный складок (цефалокаудальних и боковых) осуществляется отделения собственно зародыша от внезародышевых органов, а также изменение его плоской формы на цилиндрическую. Одновременно дорсальные участка мезодермы зародыша делятся на отдельные сегменты, расположенные с обеих сторон хорды, - сомиты. На 21-е сутки в организме зародыша есть 2-3 пары сомиты. Сомиты начинают образовываться с III пары, I и II пары появляются несколько позже. Количество сомиты постепенно нарастает: на 23-е сутки развития насчитывается 10 пар сомиты, на 25-ю - 14 пар, на 27-м - 25 пар, в конце пятой недели количество сомиты в эмбрионе достигает 43-44 пар. На основе подсчета числа сомиты можно приблизительно определить сроки развития (сомитний возраст) эмбриона.

С внешней части каждого сомиты возникает дерматом, с внутренней - склеротом, со средней - миотом. Дерматом становится источником дермы кожи, склеротом - хрящевой и костной тканей, миотом - скелетных мышц спинной части зародыша. Вентральные участки мезодермы - спланхнотом - не сегментируются, а разделяются на висцеральный и париетальной листки, из которых развиваются серозные оболочки внутренних органов, мышечная ткань сердца и кора надпочечников. Из мезенхимы спланхнотома образуются кровеносные сосуды, клетки крови, соединительная и гладкая мышечная ткани зародыша. Участок мезодермы, связывающий сомиты с спланхнотомом, делится на сегментные ножки - нефрогонотом, которые служат источником развития почек и половых желез, а также парамезонефральних протоков. Из последних образуется эпителий матки и яйцевода.

В процессе дифференциации зародышевой эктодермы образуется нервная трубка, нервные гребни, плакоды, кожная эктодерма и прехордальной пластинки. Процесс формирования нервной трубки называется нейруляции. Он заключается в образовании щелевидной углубления на поверхности эктодермы; утолщенные края этого углубления (нервные валики) срастаются с образованием нервной трубки. С краниальной части нервной трубки формируются мозговые пузыри является зачатком головного мозга. С обеих сторон от нервной трубки (между последней и кожной эктодермой) отделяются группы клеток, из которых формируются нервные гребни. Клетки нервного гребня способны к миграции. Клетки, мигрирующие в направлении дерматома, дают начало пигментным клеткам - меланоцитам; клетки нервных гребней, которые мигрируют в направлении брюшной полости, дают начало симпатической и парасимпатической нервной узлам, мозговом веществе надпочечников. Из клеток нервных гребней, не мигрировали, образуются ганглиозные пластинки, из которых развиваются спинномозговые и периферийные вегетативные нервные ганглии. С плакод формируются ганглии головы и нервные клетки органа слуха и равновесия.



Элементарной единицей всего живого на Земле является клетка. Именно образование новых клеток позволяет организму расти и развиваться. Жизнедеятельность и строение этих единиц весьма сложно и зависит от специфики предназначения.

Появление термина «зигота»

Появление термина «зигота» является заслугой немецкого ученого Эдварда Страсбургера, который всю свою жизнь посвятил изучению цитологии и хромосомной теории наследственности. Именно он в конце XIX века впервые пришел к выводу, что в растительном, животном и человеческом организме происходит примерно по одной и той же схеме.

Зигота: определение

  1. Прямое развитие. В этом случае ребенок по внешним и внутренним признакам схож с родителями. Отличия состоят в размерах и недоразвитии некоторых органов. Характерно для птиц и млекопитающих, в том числе для человека.
  2. Непрямое развитие. При таком типе развития ребенок (личинка) имеет множество отличий с родителями. Характерно для лягушек и насекомых.

Зиготы - это клетки, дублирующие генотип родителей. Но в процессе развития зародыша клетки начинают различаться по строению и выполнять различные функции. Это происходит из-за того, что одни виды генов функционируют в одних клетках, а другие в других. Таким образом, организм является сложноорганизованной системой, в основе которой лежит зигота.

После сближения женского и мужского пронуклеусов, которое продолжается у млекопитающих около 12 ч, образуется зигота - одноклеточный зародыш. Уже на стадии зиготы выявляются презумптивные зоны (лат. presumptio - вероятность, предположение) как источники развития соответствующих участков бластулы, из которых в дальнейшем формируются зародышевые листки.

Рис. Зигота человека в стадии сближения мужского и женского ядер (пронуклеусов): (по Б.П.Хватову).

1 - женское ядро; 2 - мужское ядро.

Дробление и образование бластулы

Дробление - последовательное митотическое деление зиготы на клетки (бластомеры) без роста дочерних клеток до размеров материнской.

Образующиеся бластомеры остаются объединенными в единый организм зародыша. В зиготе образуется митотическое веретено между отдаляющимися к полюсам центриолями, внесенными сперматозоидом. Пронуклеусы вступают в стадию профазы с формированием объединенного диплоидного набора (Метод выявления презумптивных зон предложен немецким эмбриологом Фогтом) хромосом яйцеклетки и сперматозоида. Пройдя все остальные фазы митотического деления, зигота разделяется на две дочерние клетки - бластомеры. Вследствие фактического отсутствия G 1 -периода, во время которого происходит рост клеток, образовавшихся в результате деления, клетки гораздо меньше материнской, поэтому и величина зародыша в целом в этот период независимо от числа составляющих его клеток не превышает величину исходной клетки - зиготы. Все это позволило назвать описываемый процесс дроблением (т.е. измельчением), а клетки, образующиеся в процессе дробления, - бластомерами.

Дробление зиготы человека начинается к концу первых суток и характеризуется как полное неравномерное асинхронное. В течение первых суток оно происходит медленно. Первое дробление (деление) зиготы завершается через 30 ч, в результате образуется 2 бластомера, по- крытых оболочкой оплодотворения. За стадией двух бластомеров следует стадия трех бластомеров.

С первых же дроблений зиготы формируются два вида бластомеров - «темные» и «светлые». «Светлые», более мелкие, бластомеры дробятся быстрее и располагаются одним слоем вокруг крупных «темных», которые оказываются в середине зародыша. Из поверхностных «светлых» бластомеров в дальнейшем возникает трофобласт, связывающий зародыш с материнским организмом и обеспечивающий его питание. Внутренние, «темные», бластомеры формируют эмбриобласт, из которого образуются тело зародыша и некоторые внезародышевые органы (амнион, желточный мешок, аллантоис).

Начиная с трех суток, дробление идет быстрее, и на 4-е сутки зародыш состоит из 7-12 бластомеров. Уже через 50-60 ч образуется плотное скопление клеток - морула, а на 3-4-е сутки начинается формирование бластоцисты - полого пузырька, заполненного жидкостью (рис).

Рис. Зародыш человека на ранних стадиях развития (по Гертигу и Рокку).

А - стадия двух бластомеров; Б - бластоциста; I - эмбриобласт, 2 - трофобласт; 3 - полость бласто цисты.

Бластоциста в течение 3 сут перемещается по яйцеводу к матке и через 4 сут. попадает в матку. Бластоциста находится в полости матки в свободном виде в течение 2 дней (5-е и б-е сутки), и эта стадия обозначается как свободная бластоциста. К этому времени бластоциста увеличивается благодаря росту числа бластомеров - клеток эмбриобласта и трофобласта - до 100 и более вследствие усиленного всасывания трофобластом секрета маточных желез, а также вследствие активной выработки жидкости самим трофобластом (рис).

Эмбриобласт располагается в виде узелка зародышевых клеток («зародышевый узелок»), который прикрепляется изнутри к трофобласту на одном из полюсов бластоцисты и начинается имплантация.

Рис. 37. Дробление, гаструляция и имплантация зародыша человека (схема).

1 - дробление, 2 - морула; 3 - бластоциста; 4 - полость бластоцисты; 5 - эмбриобласт; 6 - трофобласт; 7 - зародышевый узелок: а - эпибласт, б - гипобласт: 8 - оболочка оплодотворения; 9 - амниотический (эктодермальный) пузырек; 10 - внезародышевая мезодерма; II - эктодерма; 12 - энтодерма; 13 - цитотрофобласт; 14 - симпластотрофобласт; 15 - зародышевый диск; 16 - лакуны с материнской кровью; 17 - хорион; 18 - амниотическая ножка; 19 - желточный пузырек; 20 - слизистая оболочка матки; 21 - яйцевод.

Зигота

Зигота (греч. zygote соединенная в пару) - диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой. Термин ввёл немецкий ботаник Э. Страсбургер.

У человека первое митотическое деление зиготы происходит спустя примерно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому акту дробления. Клетки, образовавшиеся в результате дробления зиготы называют бластомерами. Первые деления зиготы называют "дроблениями" потому, что клетка именно дробится: дочерние клетки после каждого деления становятся всё мельче, а между делениями отсутствует стадия клеточного роста.

Развитие зиготы Зигота либо непосредственно после оплодотворения приступает к развитию, либо одевается плотной оболочкой и на некоторое время превращается в покоящуюся спору (часто называется зигоспорой) - характерно для многих грибов и водорослей.

Дробление

Период эмбрионального развития многоклеточного животного начинается с дробления зиготы и завершается рождением новой особи. Процесс дробления заключается в серии последовательных митотических делений зиготы. Образующиеся в результате нового деления зиготы две клетки и все последующие поколения клеток на этом этапе носят название бластомеров. В ходе дробления одно деление следует за другим, и не происходит роста образующихся бластомеров, вследствие чего каждое новое поколение бластомеров представлено более мелкими клетками. Эта особенность клеточных делений при развитии оплодотворенной яйцеклетки и определила появление образного термина - дробление зиготы.

У разных видов животных яйцеклетки различаются по количеству и характеру распределения в цитоплазме запасных питательных веществ (желтка). Это в значительной степени определяет характер последующего дробления зиготы. При небольшом количестве и равномерном распределении желтка в цитоплазме происходит деление всей массы зиготы с образованием одинаковых бластомеров - полное равномерное дробление (например, у млекопитающих). При скоплении желтка преимущественно у одного из полюсов зиготы происходит неравномерное дробление - образуются бластомеры, различающиеся по размерам: более крупные макромеры и микромеры (например, у амфибий). Если же яйцеклетка очень богата желтком, то дробится ее часть, свободная от желтка. Так, у пресмыкающихся, птиц дроблению подвергается лишь дисковидный участок зиготы у одного из полюсов, где располагается ядро - неполное, дискоидальное дробление. Наконец, у насекомых в процессе дробления задействован лишь поверхностный слой цитоплазмы зиготы - неполное, поверхностное дробление.

В результате дробления (когда число делящихся бластомеров достигает значительного числа) образуется бластула. В типичном случае (например, у ланцетника) бластула представляет собой полый шар, стенка которого образована одним слоем клеток (бластодерма). Полость бластулы - бластоцелъ, иначе называемая первичной полостью тела, заполнена жидкостью. У амфибий бластула имеет очень небольшую полость, а у некоторых животных (например, членистоногих) бластоцель может полностью отсутствовать.