Funktsiooni tuletis. Tuletise geomeetriline tähendus. Tuletiste rakendamine eksamiülesannetes

Kujutagem ette künklikku ala läbivat sirget teed. See tähendab, et see läheb üles ja alla, kuid ei pööra paremale ega vasakule. Kui telg on suunatud horisontaalselt piki teed ja vertikaalselt, on teejoon väga sarnane mõne pideva funktsiooni graafikuga:

Telg on teatud nullkõrguse tase; elus kasutame sellena merepinda.

Mööda sellist teed edasi liikudes liigume ka üles või alla. Võime ka öelda: kui argument muutub (liikumine mööda abstsisstellge), muutub funktsiooni väärtus (liikumine mööda ordinaattelge). Mõelgem nüüd sellele, kuidas määrata meie tee “järsust”? Mis väärtus see võiks olla? See on väga lihtne: kui palju kõrgus teatud vahemaa võrra edasi liikudes muutub. Tõepoolest, erinevatel teelõikudel, liikudes edasi (piki x-telge) ühe kilomeetri võrra, tõuseme või langeme merepinna suhtes (mööda y-telge) erineva arvu meetreid.

Tähistame edusamme (loe "delta x").

Kreeka tähte (delta) kasutatakse matemaatikas tavaliselt eesliitena, mis tähendab "muutust". See tähendab - see on koguse muutus, - muutus; mis see siis on? See on õige, suurusjärgu muutus.

Tähtis: avaldis on üks tervik, üks muutuja. Ärge kunagi eraldage "delta" tähest "x" või mis tahes muust tähest! See tähendab näiteks.

Niisiis, oleme liikunud edasi, horisontaalselt, võrra. Kui võrrelda tee joont funktsiooni graafikuga, siis kuidas tähistada tõusu? Kindlasti,. See tähendab, et edasi liikudes tõuseme kõrgemale.

Väärtust on lihtne arvutada: kui alguses olime kõrgusel ja pärast liikumist avastasime end kõrguselt, siis. Kui lõpp-punkt on alguspunktist madalam, on see negatiivne - see tähendab, et me ei tõuse, vaid laskume.

Pöördume tagasi "järsuse" juurde: see on väärtus, mis näitab, kui palju (järsult) kasvab kõrgus ühe kaugusühiku võrra edasi liikudes:

Oletame, et mõnel teelõigul kilomeetri võrra edasi liikudes tõuseb tee kilomeetri võrra ülespoole. Siis on selle koha kalle võrdne. Ja kui tee m edasi liikudes km võrra langeks? Siis on kalle võrdne.

Vaatame nüüd ühe mäe tippu. Kui võtta lõigu algus pool kilomeetrit enne tippu ja lõpp pool kilomeetrit pärast seda, on näha, et kõrgus on peaaegu sama.

See tähendab, et meie loogika kohaselt selgub, et kalle on siin peaaegu võrdne nulliga, mis ilmselgelt pole tõsi. Veidi üle kilomeetri võib palju muutuda. Järsu adekvaatsemaks ja täpsemaks hindamiseks on vaja arvestada väiksemate aladega. Näiteks kui mõõta kõrguse muutust ühe meetri liigutamisel, on tulemus palju täpsem. Kuid isegi sellest täpsusest ei pruugi meile piisata - kui tee keskel on post, siis saame sellest lihtsalt mööda minna. Millise vahemaa peaksime siis valima? Sentimeeter? Millimeeter? Vähem on parem!

Reaalses elus on kauguste mõõtmine millimeetri täpsusega enam kui piisav. Kuid matemaatikud püüdlevad alati täiuslikkuse poole. Seetõttu leiutati kontseptsioon lõpmatult väike, see tähendab, et absoluutväärtus on väiksem kui suvaline arv, mida saame nimetada. Näiteks ütlete: üks triljondik! Kui palju vähem? Ja jagate selle arvu - ja see on veelgi väiksem. Ja nii edasi. Kui tahame kirjutada, et suurus on lõpmata väike, kirjutame nii: (loeme “x kipub nulli”). On väga oluline mõista et see arv ei ole null! Aga sellele väga lähedal. See tähendab, et saate sellega jagada.

Lõpmatu väikesele vastandmõiste on lõpmata suur (). Tõenäoliselt olete sellega juba kokku puutunud, kui töötasite ebavõrdsuse kallal: see arv on mooduli võrra suurem kui ükski number, mida võite ette kujutada. Kui leiate suurima võimaliku arvu, korrutage see lihtsalt kahega ja saate veelgi suurema arvu. Ja lõpmatus on veelgi suurem kui see, mis juhtub. Tegelikult on lõpmatult suur ja lõpmatult väike teineteise pöördväärtus, st at ja vastupidi: at.

Nüüd pöördume tagasi oma tee juurde. Ideaalselt arvutatud kalle on tee lõpmatu väikese lõigu jaoks arvutatud kalle, see tähendab:

Märgin, et lõpmata väikese nihke korral on ka kõrguse muutus lõpmatult väike. Kuid lubage mul teile meelde tuletada, et lõpmata väike ei tähenda nulliga võrdset. Kui jagada lõpmata väikesed arvud üksteisega, saab täiesti tavalise arvu, näiteks . See tähendab, et üks väike väärtus võib olla täpselt kordi suurem kui teine.

Milleks see kõik on? Tee, järsk... Me ei lähe autorallile, vaid õpetame matemaatikat. Ja matemaatikas on kõik täpselt sama, ainult kutsutakse teisiti.

Tuletise mõiste

Funktsiooni tuletis on funktsiooni juurdekasvu ja argumendi juurdekasvu suhe argumendi lõpmatu väikese juurdekasvu korral.

Järk-järgult matemaatikas kutsuvad nad muutust. Nimetatakse seda, kuivõrd argument () muutub piki telge liikudes argumentide juurdekasv ja on määratud.Kui palju on funktsioon (kõrgus) muutunud piki telge vahemaa võrra edasi liikudes funktsiooni juurdekasv ja on määratud.

Seega on funktsiooni tuletis suhe millal. Tuletist tähistame funktsiooniga sama tähega, ainult algarvuga üleval paremal: või lihtsalt. Niisiis, kirjutame tuletisvalemi järgmiste tähiste abil:

Sarnaselt teele on siin, kui funktsioon suureneb, on tuletis positiivne ja kui see väheneb, on see negatiivne.

Kas tuletis võib olla võrdne nulliga? Kindlasti. Näiteks kui sõidame tasasel horisontaalsel teel, on järsus null. Ja see on tõsi, kõrgus ei muutu üldse. Nii on ka tuletisega: konstantse funktsiooni tuletis (konstant) on võrdne nulliga:

kuna sellise funktsiooni juurdekasv on võrdne nulliga mis tahes.

Meenutagem mäetipu näidet. Selgus, et lõigu otsad oli võimalik paigutada tipu vastaskülgedele nii, et otste kõrgus osutub samaks, see tähendab, et segment on teljega paralleelne:

Kuid suured segmendid on märk ebatäpsest mõõtmisest. Tõstame oma lõigu endaga paralleelselt üles, siis selle pikkus väheneb.

Lõpuks, kui oleme tipule lõpmatult lähedal, muutub lõigu pikkus lõpmatult väikeseks. Kuid samal ajal jäi see teljega paralleelseks, see tähendab, et kõrguste erinevus selle otstes on võrdne nulliga (see ei kipu, kuid on võrdne). Seega tuletis

Seda võib mõista nii: kui seisame kõige tipus, muudab väike nihe vasakule või paremale meie pikkust tühiselt.

Sellel on ka puhtalgebraline seletus: tipust vasakul funktsioon suureneb, paremal aga väheneb. Nagu me varem teada saime, on funktsiooni suurenemisel tuletis positiivne ja kui see väheneb, siis negatiivne. Aga see muutub sujuvalt, ilma hüpeteta (kuna tee ei muuda kuskil järsult kallet). Seetõttu peavad olema negatiivsed ja positiivsed väärtused. See on koht, kus funktsioon ei suurene ega vähene – tipupunktis.

Sama kehtib ka küna kohta (ala, kus vasakpoolne funktsioon väheneb ja parempoolne funktsioon suureneb):

Pisut lähemalt juurdekasvust.

Seega muudame argumendi suuruseks. Millisest väärtusest me muudame? Mis sellest (vaidlusest) nüüd on saanud? Saame valida mis tahes punkti ja nüüd tantsime sellest.

Vaatleme koordinaadiga punkti. Funktsiooni väärtus selles on võrdne. Seejärel teeme sama juurdekasvu: suurendame koordinaati võrra. Mis argument nüüd on? Väga lihtne: . Mis on funktsiooni väärtus praegu? Kuhu läheb argument, läheb ka funktsioon: . Aga funktsiooni juurdekasv? Ei midagi uut: see on ikkagi summa, mille võrra funktsioon on muutunud:

Harjutage juurdekasvu leidmist:

  1. Leia funktsiooni juurdekasv punktis, kus argumendi juurdekasv on võrdne.
  2. Sama kehtib ka funktsiooni kohta punktis.

Lahendused:

Erinevates punktides sama argumendi juurdekasvuga on funktsiooni juurdekasv erinev. See tähendab, et tuletis igas punktis on erinev (me arutasime seda kohe alguses - tee järsk on erinevates punktides erinev). Seetõttu peame tuletise kirjutamisel näitama, millisel hetkel:

Toitefunktsioon.

Võimsusfunktsioon on funktsioon, mille argument on mingil määral (loogiline, eks?).

Pealegi - mis tahes määral: .

Lihtsaim juhtum on siis, kui eksponents on:

Leiame selle tuletise ühest punktist. Tuletagem meelde tuletise määratlust:

Nii et argument muutub väärtusest kuni. Mis on funktsiooni juurdekasv?

Kasv on see. Kuid funktsioon mis tahes punktis on võrdne selle argumendiga. Sellepärast:

Tuletis on võrdne:

Tuletis on võrdne:

b) Vaatleme nüüd ruutfunktsiooni (): .

Nüüd meenutagem seda. See tähendab, et juurdekasvu väärtuse võib tähelepanuta jätta, kuna see on lõpmata väike ja seetõttu teise termini taustal tähtsusetu:

Niisiis, me leidsime veel ühe reegli:

c) Jätkame loogilist seeriat: .

Seda avaldist saab lihtsustada mitmel viisil: avage esimene sulg, kasutades summa kuubi lühendatud korrutamise valemit, või faktoristage kogu avaldis kuubikute erinevuse valemi abil. Proovige seda ise teha, kasutades mõnda soovitatud meetodit.

Niisiis, sain järgmise:

Ja jälle meenutagem seda. See tähendab, et võime tähelepanuta jätta kõik terminid, mis sisaldavad:

Saame: .

d) Sarnased reeglid on saadaval suurte võimsuste jaoks:

e) Selgub, et seda reeglit saab üldistada suvalise astendajaga astmefunktsiooni jaoks, isegi mitte täisarvuga:

(2)

Reegli saab sõnastada sõnadega: "aste tuuakse koefitsiendina ette ja seejärel vähendatakse võrra."

Tõestame seda reeglit hiljem (peaaegu päris lõpus). Vaatame nüüd mõnda näidet. Leidke funktsioonide tuletis:

  1. (kahel viisil: valemiga ja kasutades tuletise definitsiooni – funktsiooni juurdekasvu arvutades);

Trigonomeetrilised funktsioonid.

Siin kasutame ühte fakti kõrgemast matemaatikast:

Väljendiga.

Tõestust saate teada instituudi esimesel kursusel (ja sinna saamiseks peate hästi sooritama ühtse riigieksami). Nüüd näitan seda lihtsalt graafiliselt:

Näeme, et kui funktsiooni pole olemas, lõigatakse graafik punkt välja. Kuid mida lähemal väärtusele, seda lähemal on funktsioon. See on eesmärk.

Lisaks saate seda reeglit kontrollida kalkulaatori abil. Jah, jah, ärge kartke, kasutage kalkulaatorit, me ei ole veel ühtsel riigieksamil.

Niisiis, proovime: ;

Ärge unustage lülitada oma kalkulaatorit radiaanirežiimile!

jne. Näeme, et mida väiksem, seda lähemal on suhtarvu väärtus.

a) Mõelge funktsioonile. Nagu tavaliselt, leiame selle juurdekasvu:

Muudame siinuste erinevuse korrutiseks. Selleks kasutame valemit (pidage meeles teemat ""): .

Nüüd tuletis:

Teeme asendus: . Siis on see ka lõpmatu väiksearvuline: . Avaldis jaoks on järgmine:

Ja nüüd meenutame seda väljendiga. Ja mis siis, kui summas (st at-s) võib tähelepanuta jätta lõpmata väikese suuruse.

Niisiis, saame järgmise reegli: siinuse tuletis on võrdne koosinusega:

Need on põhilised (tabelikujulised) tuletised. Siin on need ühes loendis:

Hiljem lisame neile veel mõned, kuid need on kõige olulisemad, kuna neid kasutatakse kõige sagedamini.

Harjuta:

  1. Leia funktsiooni tuletis punktis;
  2. Leia funktsiooni tuletis.

Lahendused:

Eksponent ja naturaallogaritm.

Matemaatikas on funktsioon, mille tuletis mis tahes väärtuse jaoks on samaaegselt võrdne funktsiooni enda väärtusega. Seda nimetatakse eksponendiks ja see on eksponentsiaalne funktsioon

Selle funktsiooni alus - konstant - on lõpmatu kümnendmurd, see tähendab irratsionaalne arv (näiteks). Seda nimetatakse "Euleri numbriks", mistõttu on see tähistatud tähega.

Niisiis, reegel:

Väga lihtne meelde jätta.

Noh, ärme lähe kaugele, mõelgem kohe pöördfunktsioonile. Milline funktsioon on eksponentsiaalfunktsiooni pöördfunktsioon? Logaritm:

Meie puhul on aluseks number:

Sellist logaritmi (see tähendab logaritmi alusega) nimetatakse "loomulikuks" ja me kasutame selle jaoks spetsiaalset tähistust: kirjutame selle asemel.

Millega see on võrdne? Muidugi, .

Naturaallogaritmi tuletis on samuti väga lihtne:

Näited:

  1. Leia funktsiooni tuletis.
  2. Mis on funktsiooni tuletis?

Vastused: Eksponent- ja naturaallogaritm on tuletise vaatenurgast ainulaadselt lihtsad funktsioonid. Mis tahes muu alusega eksponentsiaalsetel ja logaritmilistel funktsioonidel on erinev tuletis, mida analüüsime hiljem, kui oleme läbinud diferentseerimisreeglid.

Eristamise reeglid

Mille reeglid? Jälle uus termin, jälle?!...

Eristumine on tuletise leidmise protsess.

See on kõik. Kuidas veel ühe sõnaga seda protsessi nimetada? Mitte tuletis... Matemaatikud nimetavad diferentsiaali funktsiooni samaks juurdekasvuks at. See termin pärineb ladina sõnast differentia – erinevus. Siin.

Kõigi nende reeglite tuletamisel kasutame kahte funktsiooni, näiteks ja. Nende juurdekasvu jaoks vajame ka valemeid:

Kokku on 5 reeglit.

Konstant võetakse tuletismärgist välja.

Kui - mingi konstantne arv (konstant), siis.

Ilmselt töötab see reegel ka erinevuse jaoks: .

Tõestame seda. Las see olla või lihtsam.

Näited.

Leidke funktsioonide tuletised:

  1. punktis;
  2. punktis;
  3. punktis;
  4. punktis.

Lahendused:

Toote tuletis

Siin on kõik sarnane: tutvustame uut funktsiooni ja leiame selle juurdekasvu:

Tuletis:

Näited:

  1. Leia funktsioonide ja tuletised;
  2. Leia funktsiooni tuletis punktis.

Lahendused:

Eksponentfunktsiooni tuletis

Nüüd piisab teie teadmistest, et õppida leidma mis tahes eksponentsiaalfunktsiooni tuletist, mitte ainult eksponente (kas olete juba unustanud, mis see on?).

Niisiis, kus on mõni number.

Me juba teame funktsiooni tuletist, seega proovime oma funktsiooni taandada uuele alusele:

Selleks kasutame lihtsat reeglit: . Seejärel:

Noh, see töötas. Proovige nüüd leida tuletis ja ärge unustage, et see funktsioon on keeruline.

Juhtus?

Siin kontrollige ennast:

Valem osutus väga sarnaseks eksponendi tuletisele: nii nagu see oli, jääb see samaks, ilmus ainult tegur, mis on vaid arv, kuid mitte muutuja.

Näited:
Leidke funktsioonide tuletised:

Vastused:

Logaritmilise funktsiooni tuletis

Siin on see sarnane: te juba teate naturaallogaritmi tuletist:

Seetõttu, et leida suvaline logaritm erineva alusega, näiteks:

Peame selle logaritmi taandada baasini. Kuidas muuta logaritmi alust? Loodan, et mäletate seda valemit:

Alles nüüd kirjutame selle asemel:

Nimetaja on lihtsalt konstant (konstantne arv, ilma muutujata). Tuletis saadakse väga lihtsalt:

Eksponentsiaalsete ja logaritmiliste funktsioonide tuletisi ei leidu ühtsest riigieksamist peaaegu kunagi, kuid nende tundmine ei ole üleliigne.

Kompleksfunktsiooni tuletis.

Mis on "keeruline funktsioon"? Ei, see ei ole logaritm ega arctangent. Nendest funktsioonidest võib olla raske aru saada (kuigi kui te peate logaritmi keeruliseks, lugege teemat "Logaritmid" ja kõik on korras), kuid matemaatilisest vaatenurgast ei tähenda sõna "keeruline" "keeruline".

Kujutage ette väikest konveieri: kaks inimest istuvad ja teevad mingeid toiminguid mõne esemega. Näiteks esimene mähib šokolaaditahvli ümbrisesse ja teine ​​seob selle paelaga. Tulemuseks on komposiitobjekt: paelaga mähitud ja seotud šokolaaditahvel. Šokolaaditahvli söömiseks peate tegema vastupidised toimingud vastupidises järjekorras.

Loome sarnase matemaatilise konveieri: kõigepealt leiame arvu koosinuse ja seejärel ruudustage saadud arv. Niisiis, meile antakse number (šokolaad), ma leian selle koosinuse (ümbris) ja siis ruudud, mis ma sain (seo see lindiga). Mis juhtus? Funktsioon. See on näide keerulisest funktsioonist: kui selle väärtuse leidmiseks sooritame esimese toimingu otse muutujaga ja seejärel teise toimingu esimese toiminguga.

Saame hõlpsasti teha samu samme vastupidises järjekorras: kõigepealt ruudud ja siis otsin saadud arvu koosinust: . Lihtne on arvata, et tulemus on peaaegu alati erinev. Keeruliste funktsioonide oluline tunnus: toimingute järjekorra muutumisel muutub funktsioon.

Teisisõnu, kompleksfunktsioon on funktsioon, mille argument on teine ​​funktsioon: .

Esimese näitena .

Teine näide: (sama asi). .

Tegevust, mida me viimati teeme, nimetatakse "väline" funktsioon, ja esmalt sooritatud toiming – vastavalt "sisemine" funktsioon(need on mitteametlikud nimed, kasutan neid ainult materjali lihtsas keeles selgitamiseks).

Proovige ise kindlaks teha, milline funktsioon on väline ja milline sisemine:

Vastused: Sisemiste ja välimiste funktsioonide eraldamine on väga sarnane muutujate muutmisega: näiteks funktsioonis

Muudame muutujaid ja saame funktsiooni.

Noh, nüüd eraldame oma šokolaaditahvli ja otsime tuletise. Protseduur on alati vastupidine: kõigepealt otsime välisfunktsiooni tuletist, seejärel korrutame tulemuse sisemise funktsiooni tuletisega. Seoses algse näitega näeb see välja järgmine:

Veel üks näide:

Niisiis, sõnastame lõpuks ametliku reegli:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

Tundub lihtne, eks?

Kontrollime näidetega:

DERIVAAT. LÜHIDALT PEAMISEST

Funktsiooni tuletis- funktsiooni juurdekasvu ja argumendi juurdekasvu suhe argumendi lõpmatu väikese juurdekasvu korral:

Põhilised tuletised:

Eristamise reeglid:

Konstant võetakse tuletismärgist välja:

Summa tuletis:

Toote tuletis:

Jagatise tuletis:

Kompleksfunktsiooni tuletis:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

  1. Defineerime "sisemise" funktsiooni ja leiame selle tuletise.
  2. Defineerime "välise" funktsiooni ja leiame selle tuletise.
  3. Korrutame esimese ja teise punkti tulemused.

Noh, teema on läbi. Kui loete neid ridu, tähendab see, et olete väga lahe.

Sest ainult 5% inimestest on võimelised ise midagi meisterdama. Ja kui sa loed lõpuni, siis oled selle 5% sees!

Nüüd kõige tähtsam.

Olete selle teema teooriast aru saanud. Ja kordan, see... see on lihtsalt super! Oled juba parem kui valdav enamus oma eakaaslasi.

Probleem on selles, et sellest ei pruugi piisata...

Milleks?

Ühtse riigieksami eduka sooritamise, eelarvega kõrgkooli astumise ja, MIS TÄHTIS, eluks ajaks.

Ma ei veena sind milleski, ütlen vaid üht...

Hea hariduse saanud inimesed teenivad palju rohkem kui need, kes seda pole saanud. See on statistika.

Kuid see pole peamine.

Peaasi, et nad on ROHKEM ÕNNELIKUD (sellised uuringud on olemas). Võib-olla sellepärast, et nende ees avaneb palju rohkem võimalusi ja elu muutub helgemaks? Ei tea...

Aga mõelge ise...

Mida on vaja selleks, et olla ühtsel riigieksamil teistest parem ja lõpuks... õnnelikum?

SELLEL TEEMAL PROBLEEMIDE LAHENDAMISEGA VÕITA OMA KÄSI.

Eksami ajal teooriat ei küsita.

Sa vajad lahendada probleeme ajaga.

Ja kui te pole neid lahendanud (PALJU!), teete kindlasti kuskil rumala vea või teil pole lihtsalt aega.

See on nagu spordis – seda on vaja mitu korda korrata, et kindlalt võita.

Leidke kollektsioon kust iganes soovite, tingimata lahendustega, üksikasjaliku analüüsiga ja otsusta, otsusta, otsusta!

Võite kasutada meie ülesandeid (valikuline) ja me loomulikult soovitame neid.

Meie ülesannete paremaks kasutamiseks peate aitama pikendada praegu loetava YouCleveri õpiku eluiga.

Kuidas? On kaks võimalust.

  1. Avage kõik selles artiklis peidetud toimingud -
  2. Avage juurdepääs kõigile peidetud ülesannetele kõigis õpiku 99 artiklis - Osta õpik - 499 RUR

Jah, meie õpikus on 99 sellist artiklit ja ligipääs kõikidele ülesannetele ja kõikidele nendes olevatele peidetud tekstidele saab kohe avada.

Juurdepääs kõigile peidetud ülesannetele on tagatud saidi KOGU eluea jooksul.

Kokkuvõtteks...

Kui teile meie ülesanded ei meeldi, otsige teisi. Lihtsalt ärge piirduge teooriaga.

“Arusaadav” ja “ma oskan lahendada” on täiesti erinevad oskused. Te vajate mõlemat.

Otsige üles probleemid ja lahendage need!

Näidates seost tuletise märgi ja funktsiooni monotoonsuse olemuse vahel.

Palun olge järgneva suhtes äärmiselt ettevaatlik. Vaata, MIS sulle antakse ajakava! Funktsioon või selle tuletis

Kui on antud tuletise graafik, siis huvitavad meid ainult funktsioonimärgid ja nullid. Meid ei huvita põhimõtteliselt mingid “künkad” ega “lohud”!

Ülesanne 1.

Joonisel on näidatud intervallil defineeritud funktsiooni graafik. Määrake täisarvuliste punktide arv, mille korral funktsiooni tuletis on negatiivne.


Lahendus:

Joonisel on kahaneva funktsiooni alad värviliselt esile tõstetud:


Need funktsiooni kahanevad piirkonnad sisaldavad 4 täisarvu.


2. ülesanne.

Joonisel on näidatud intervallil defineeritud funktsiooni graafik. Leidke punktide arv, milles funktsiooni graafiku puutuja on joonega paralleelne või ühtib sellega.


Lahendus:

Kui funktsiooni graafiku puutuja on paralleelne (või langeb kokku) sirgega (või mis on sama), millel on kalle, võrdub nulliga, siis puutujal on nurgakoefitsient .

See omakorda tähendab, et puutuja on teljega paralleelne, kuna kalle on puutuja kaldenurga puutuja telje suhtes.

Seetõttu leiame graafikult äärmuspunktid (maksimaalsed ja miinimumpunktid) – just nendes punktides on graafiku puutuja funktsioonid teljega paralleelsed.


Selliseid punkte on 4.

3. ülesanne.

Joonisel on näidatud intervallil defineeritud funktsiooni tuletise graafik. Leidke punktide arv, milles funktsiooni graafiku puutuja on joonega paralleelne või ühtib sellega.


Lahendus:

Kuna funktsiooni graafiku puutuja on paralleelne (või langeb kokku) sirgega, millel on kalle, siis on ka puutujal kalle.

See omakorda tähendab, et puutepunktides.

Seetõttu vaatame, kui paljude graafiku punktide ordinaat on võrdne .

Nagu näete, on selliseid punkte neli.

4. ülesanne.

Joonisel on näidatud intervallil defineeritud funktsiooni graafik. Leidke punktide arv, kus funktsiooni tuletis on 0.


Lahendus:

Tuletis on äärmuspunktides võrdne nulliga. Meil on neid 4:


5. ülesanne.

Joonisel on kujutatud funktsiooni ja üheteistkümne punkti graafik x-teljel:. Mitmes neist punktidest on funktsiooni tuletis negatiivne?


Lahendus:

Väheneva funktsiooni intervallidel võtab selle tuletis negatiivsed väärtused. Ja funktsioon väheneb punktides. Selliseid punkte on 4.

6. ülesanne.

Joonisel on näidatud intervallil defineeritud funktsiooni graafik. Leia funktsiooni äärmuspunktide summa.


Lahendus:

Äärmuslikud punktid– need on maksimumpunktid (-3, -1, 1) ja miinimumpunktid (-2, 0, 3).

Ekstreemumipunktide summa: -3-1+1-2+0+3=-2.

Ülesanne 7.

Joonisel on näidatud intervallil defineeritud funktsiooni tuletise graafik. Leia funktsiooni suurenemise intervallid. Oma vastuses märkige nendes intervallides sisalduvate täisarvude punktide summa.


Lahendus:

Joonisel on esile tõstetud intervallid, kus funktsiooni tuletis on mittenegatiivne.

Väikesel suureneval intervallil ei ole täisarvupunkte, kasvaval intervallil on neli täisarvu väärtust: , , ja .


Nende summa:

Ülesanne 8.

Joonisel on näidatud intervallil defineeritud funktsiooni tuletise graafik. Leia funktsiooni suurenemise intervallid. Oma vastuses märkige neist suurima pikkus.


Lahendus:

Joonisel on kõik intervallid, millel tuletis on positiivne, värviliselt esile tõstetud, mis tähendab, et funktsioon ise suureneb nendel intervallidel.


Neist suurima pikkus on 6.

Ülesanne 9.

Joonisel on näidatud intervallil defineeritud funktsiooni tuletise graafik. Millises segmendi punktis omandab see suurima väärtuse?


Lahendus:

Vaatame, kuidas graafik sellel segmendil käitub, mis meid huvitab ainult tuletise märk .


Tuletise märk on miinus, kuna sellel lõigul olev graafik on telje all.

Funktsiooni $y = f(x)$ tuletis antud punktis $x_0$ on funktsiooni juurdekasvu ja selle argumendi vastava juurdekasvu suhte piir, eeldusel, et viimane kaldub nulli:

$f"(x_0)=(lim)↙(△x→0)(△f(x_0))/(△x)$

Diferentseerimine on tuletise leidmise operatsioon.

Mõnede elementaarfunktsioonide tuletiste tabel

Funktsioon Tuletis
$c$ $0$
$x$ $1$
$x^n$ $nx^(n-1)$
$(1)/(x)$ $-(1)/(x^2)$
$√x$ $(1)/(2√x)$
$e^x$ $e^x$
$lnx$ $(1)/(x)$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ $(1)/(cos^2x)$
$ctgx$ $-(1)/(sin^2x)$

Eristamise põhireeglid

1. Summa tuletis (erinevus) võrdub tuletiste summaga (erinevus)

$(f(x) ± g(x))"= f"(x)±g"(x)$

Leia funktsiooni $f(x)=3x^5-cosx+(1)/(x)$ tuletis

Summa tuletis (erinevus) võrdub tuletiste summaga (vahega).

$f"(x) = (3x^5)"-(cos x)" + ((1)/(x))" = 15x^4 + sinx - (1)/(x^2)$

2. Toote tuletis

$(f(x) g(x)"= f"(x) g(x)+ f(x) g(x)"$

Leidke tuletis $f(x)=4x cosx$

$f"(x)=(4x)"·cosx+4x·(cosx)"=4·cosx-4x·sinx$

3. Jagatise tuletis

$((f(x))/(g(x)))"=(f"(x) g(x)-f(x) g(x)")/(g^2(x)) $

Leidke tuletis $f(x)=(5x^5)/(e^x)$

$f"(x)=((5x^5)"·e^x-5x^5·(e^x)")/((e^x)^2)=(25x^4·e^x- 5x^5 e^x)/((e^x)^2)$

4. Kompleksfunktsiooni tuletis võrdub välisfunktsiooni tuletise ja sisefunktsiooni tuletise korrutisega

$f(g(x))"=f"(g(x)) g"(x)$

$f"(x)=cos"(5x)·(5x)"=-sin(5x)·5= -5sin(5x)$

Tuletise füüsiline tähendus

Kui materiaalne punkt liigub sirgjooneliselt ja selle koordinaat muutub sõltuvalt ajast vastavalt seadusele $x(t)$, siis on selle punkti hetkkiirus võrdne funktsiooni tuletisega.

Punkt liigub mööda koordinaatjoont vastavalt seadusele $x(t)= 1,5t^2-3t + 7$, kus $x(t)$ on koordinaat ajahetkel $t$. Millisel ajahetkel võrdub punkti kiirus 12 dollariga?

1. Kiirus on $x(t)$ tuletis, seega leiame antud funktsiooni tuletise

$v(t) = x"(t) = 1,5 2t -3 = 3t -3 $

2. Et leida, millisel ajahetkel $t$ oli kiirus võrdne $12$-ga, loome ja lahendame võrrandi:

Tuletise geomeetriline tähendus

Tuletame meelde, et koordinaattelgedega mitteparalleelse sirge võrrandi saab kirjutada kujul $y = kx + b$, kus $k$ on sirge kalle. Koefitsient $k$ võrdub sirge ja $Ox$ telje positiivse suuna vahelise kaldenurga puutujaga.

Funktsiooni $f(x)$ tuletis punktis $х_0$ on võrdne graafiku puutuja kaldega $k$ selles punktis:

Seetõttu saame luua üldise võrdsuse:

$f"(x_0) = k = tanα$

Joonisel funktsiooni $f(x)$ puutuja suureneb, mistõttu koefitsient $k > 0$. Kuna $k > 0$, siis $f"(x_0) = tanα > 0$. Nurk $α$ puutuja ja positiivse suuna $Ox$ vahel on terav.

Joonisel funktsiooni $f(x)$ puutuja väheneb, seega koefitsient $k< 0$, следовательно, $f"(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

Joonisel on funktsiooni $f(x)$ puutuja paralleelne $Ox$ teljega, seega koefitsient $k = 0$, seega $f"(x_0) = tan α = 0$. punkt $x_0$, kus $f "(x_0) = 0$, kutsutakse äärmus.

Joonisel on kujutatud funktsiooni $y=f(x)$ graafik ja selle graafiku puutuja, mis on tõmmatud punktis abstsissiga $x_0$. Leia funktsiooni $f(x)$ tuletise väärtus punktis $x_0$.

Graafiku puutuja suureneb, seega $f"(x_0) = tan α > 0$

$f"(x_0)$ leidmiseks leiame puutuja ja $Ox$ telje positiivse suuna vahelise kaldenurga puutuja. Selleks ehitame kolmnurga $ABC$ puutuja.

Leiame nurga $BAC$ puutuja. (Täisnurkse kolmnurga teravnurga puutuja on vastaskülje ja külgneva külje suhe.)

$tg BAC = (BC)/(AC) = (3)/(12) = (1)/(4) = 0,25 $

$f"(x_0) = tg BAC = 0,25 $

Vastus: 0,25 dollarit

Tuletist kasutatakse ka suurenevate ja kahanevate funktsioonide intervallide leidmiseks:

Kui $f"(x) > 0$ intervallil, siis funktsioon $f(x)$ kasvab sellel intervallil.

Kui $f"(x)< 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

Joonisel on kujutatud funktsiooni $y = f(x)$ graafik. Leia punktide $х_1,х_2,х_3...х_7$ hulgast need punktid, kus funktsiooni tuletis on negatiivne.

Vastuseks kirjutage üles nende punktide arv.



Tuletise geomeetriline tähendus X Y 0 puutuja α k – sirge nurkkoefitsient (puutuja) Tuletise geomeetriline tähendus: kui funktsiooni y = f(x) graafikule saab tõmmata puutuja abstsissiga punktis. , y-teljega mitteparalleelne, siis väljendab see puutuja nurkkoefitsienti, s.o. Kuna siis on sirge võrdsus tõene


X y Kui α 0. Kui α > 90°, siis k 90°, siis k 90°, siis k 90°, siis k 90°, siis k title="х y Kui α 0. Kui α > 90°, siis k


X y Ülesanne 1. Joonisel on kujutatud funktsiooni y = f(x) graafik ja selle graafiku puutuja, mis on tõmmatud punktis, mille abstsiss on -1. Leia funktsiooni f(x) tuletise väärtus punktis x =






Y x x0x Joonisel on kujutatud funktsiooni y = f(x) graafik ja selle puutuja punktis, mille abstsiss on x 0. Leia funktsiooni f(x) tuletise väärtus punktis x 0. Vastus: -0,25








Joonisel on toodud intervallil (-6;6) defineeritud funktsiooni f(x) tuletise graafik. Leia funktsiooni f(x) suurenemise intervallid. Oma vastuses märkige nendes intervallides sisalduvate täisarvude punktide summa. B =...