Основные режимы работы воздушных винтов изменяемого шага. Воздушные винты. Классификация винтов. Аэродинамическая нагрузка винтов. Шаг и поступь винта. Режимы работы винтов. Тяга и мощность винтов. Зависимость тяги винта от скорости полета

Воздушный винт является агрегатом, предназначенным для создания силы тяги, которая представляет собой реакцию, отбрасываемую винтом воздушного потока, создавая силу тяги, воздушный винт преобразует механическую энергию двигателя, в работу совершаемую при поступательном движении ЛА.

Требования:

1. высокий КПД;

2. автоматическое изменение угла установки лопастей в зависимости от режима полета и работы двигателя;

3. диапазон углов установки лопастей должен обеспечивать min положительную тягу на режиме малого газа. Работу винта флюгирования на режиме отрицательной тяги

4. скорость поворота лопастей при увеличении угла установки должен быть не менее 10 с/c;

5. должны быть автоматические защитные устройства для предотвращения возникновения отрицательной тяги;

6. защита лопастей и обтекателя втулки винта (кока) от обледенения.

Классификация винтов . Угол атаки лопастей винта зависит от скорости полета при не низменном угле установки. Это явление имеет место у винтов фиксированного шага. Основной недостаток таких винтов состоит в том, что на взлете при малой скорости полета они могут быть тяжелыми и не обеспечивается взлетной мощности двигателя. При горизонтальном полете при большой поступательной скорости винт оказывается легким и скорость вращения может возрастать до недопустимо больших значений, при которых не обеспечивается надежность работы двигателя. В прошлом, когда скорости полета были небольшими, применялись эти винты. По мере роста скорости полета стал применяться винты изменяемого шага – ВИШ (диапазон установки 100) с дальнейшим ростом скорость полета, т.е. с увеличением углов j - установки, стали применять винты с автоматическими системами регулирования скорости вращения, путем изменения j от режима полета. Винты с такими системами регулирования называют автоматическими воздушными винтами – АВИШ.

Аэродинамические силы.

Точка приложения результирующей силы находится в центре давления

Аэродинамические силы появляются в результате воздействия воздушного потока на лопасти и распределение по всей поверхности. Такую схему нагружения лопасти можно рассматривать как балку, закрепленную одним концом, и подверженную действию распределенной нагрузки, которая создает изгибающий и крутящий моменты. Центр давления находится впереди плоскости вращения. зависит от углов атаки лопасти и результирующих скоростей набегающего потока. Из-за сравнительно малых плеч а и b величина момента аэродинамических сил невелика. При отрицательных углах атаки лопастей направление меняется так, что крутящие моменты и стремятся повернуть лопасть в сторону уменьшения угла установки.

Шаг и поступь винта . Геометрический шаг винта H – расстояние, на которое передвинулся бы винт вдоль оси вращения за один оборот при ввинчивании в специально сделанную для него гайку = r – расстояние до рассматриваемого сечения. Винт характеризуется , R – радиус винта. Из (1) следует, что шаг винта задан скоростью изменения φ. Воздух (упруг и сжимаем) за один оборот винт перемещается на величину значительно меньшую, чем H – поступь винта , - скорость полета м/с, n – об/с.

При расчете пользуются относительной поступью , - ,безразмерна и называется характеристикой режима или коэффициентом скорости винта.

Режимы работы винтов

При постоянном угле установки угол атаки лопастей находится в зависимости от величины скорости полета. При увеличении скорости полета угол атаки уменьшается. В этом случае говорят-винт «облегчается», так как момент сопротивления вращению винта уменьшается, а следовательно, снижается потребная мощность двигателя. Это вызывает увеличение скорости вращения. При падении скорости полета, наоборот, угол атаки увеличивается и винт «затяжеляется», скорость вращения снижается.

При большом увеличении скорости полета или при малом угле установки угол атаки может стать равным нулю и даже отрицательным. В случае лопасти встречают воздушный поток не рабочей (тыльной) частью, а спинкой (передней частью). При этом тяга и мощность могут стать отрицательными.

Тяга Р и коэффициент тяги считаются положительными, если направление тяги совпадает с направлением движения летательного аппарата, при противоположном направлении - отрицательными. В этом случае винт создает сопротивление.

Мощность винта Т и коэффициент мощности считаются положительными, когда крутящий момент от аэродинамических сил винта противоположен направлению его вращения. Если крутящий момент этих сил поддерживает вращение винта, т. е. сила сопротивления вращению , мощность винта считается отрицательной.

При изменении и в широком диапазоне относительная поступь может изменяться от нуля до бесконечно больших положительных значений (когда ).

Рассмотрим наиболее характерные режимы работы винта.

Режим, при котором поступательная скорость = 0, следовательно, и равны нулю, называется режимом работы винта - на месте (рис. слева). На графике этому режиму соответствует точка а , где коэффициенты тяги и мощности обычно имеют максимальные значения. Угол атаки лопастей а при работе винта на месте примерно равен углу установки . Так как , то винт при работе на месте никакой полезной работы не производит.

Режим работы винта, когда при наличии поступательной скорости создается положительная тяга, называется пропеллерным режимом (рис. справа). Он является основным и наиболее важным режимом работы, который используется при рулении, взлете, наборе высоты, горизонтальном полете самолета, а частично - на планировании и посадке. На графике этому режиму полета соответствует участок аб, исключая точки а и б. По мере увеличения относительной поступи уменьшаются значения коэффициентов тяги и мощности. Коэффициент полезного действия винта при этом сначала возрастает, достигая максимума в точке б, а затем быстро падает. Точка б характеризует оптимальный режим работы винта для данного значения угла установки лопастей. Таким образом, пропеллерному режиму работы винта соответствуют положительные значения коэффициентов , , .

Режим работы, при котором винт не создает ни положительной, ни отрицательной тяги (сопротивления) называется режимом нулевой тяги. На этом режиме винт как бы свободно ввинчивается в воздух, не отбрасывая его назад и не создавая тяги. Режиму нулевой тяги на графике соответствует точка в. Здесь коэффициент тяги и к.п.д. винта равны нулю. Коэффициент мощности имеет некоторое положительное значение. Это означает, что для преодоления момента сопротивления вращению винта на этом режиме требуется мощность двигателя.

Режим нулевой тяги может иметь место при планировании самолета. Угол атаки лопастей при этом, как правило, несколько меньше нуля.

Режим работы винта, когда создается отрицательная тяга (сопротивление) при положительной мощности на валу двигателя, принято называть режимом торможения , или тормозным режимом винта. На этом режиме угол притекания струй больше угла установки , т. е. угол атаки лопастей - величина отрицательная. В данном случае воздушный поток оказывает давление на спинку лопасти, чем и создает отрицательную тягу. На графике этому режиму работы винта соответствует участок, заключенный между точками б и г, на котором коэффициенты и имеют отрицательные значения, а значения коэффициента изменяются от некоторого положительного значения до нуля. Мощность двигателя, как и в предыдущем случае, требуется для преодоления момента сопротивления вращению винта.

Отрицательная тяга винта используется для сокращения длины послепосадочного пробега. Для этого лопасти специально переводят на минимальный угол установки , при котором во время пробега самолета угол атаки отрицательный.

Режим работы, когда мощность на валу двигателя равна нулю, а винт вращается за счет энергии набегающего потока (под действием аэродинамических сил, приложенных к лопастям), называется режимом авторотации . Двигатель при этом развивает мощность, необходимую лишь для преодоления внутренних сил и моментов трения, образующихся при вращении винта. На графике этому режиму соответствует точка г. Тяга винта, как и на режиме торможения, отрицательная.

Режим работы, при котором мощность на валу двигателя отрицательна, а винт вращается за счет энергии набегающего потока, называется режимом ветряка . На этом режиме винт не только не потребляет мощности двигателя, а сам вращает вал двигателя за счет энергии набегающего потока. На графике этому режиму соответствует участок правее точки г. Режим ветряка применяют для запуска остановившегося двигателя в полете. В этом случае вал двигателя раскручивается до необходимой для запуска скорости вращения, не требуя специальных пусковых устройств.

Торможение самолета при пробеге также начинается на режиме ветряка и проходит последовательно стадии авторотации и торможения до режима нулевой тяги.

Пограничным слоем называется тонкий слой заторможенного газа, образующийся на поверхности тел, обтекаемых потоком. Вязкость газа в пограничном слое является основной причиной образования силы лобового сопротивления.

При обтекании какого-либо тела частицы газа, проходящие очень близко от его поверхности, будут испытывать сильное торможение. Начиная от некоторой точки вблизи поверхности скорость потока при приближении к телу уменьшается и на самой поверхности становится равной нулю. Распределение скоростей в других сечениях поверхности аналогично (Рисунок2.1).

Расстояние R , на котором происходит уменьшение скорости, называется толщиной пограничного слоя, а изменение скорости по толщине пограничного слоя – градиентом скорости.

Рисунок2.1 Изменение скорости течения воздуха в пограничном слое

Толщина пограничного слоя измеряется в миллиметрах и зависит от вязкости и давления воздуха, от формы тела, состояния его поверхности и положения тела в воздушном потоке. Толщина пограничного слоя постепенно увеличивается от передней части тела, к задней.

На границе пограничного слоя скорость частиц становится равной скорости набегающего потока. Выше этой границы градиента скорости нет, поэтому вязкость газа практически не проявляется.

Таким образом, в пограничном слое скорости частиц изменяются от скорости внешнего потока на “границе” пограничного слоя до нуля на поверхности тела.

Из-за градиента скорости характер движения частиц газа в пограничном слое отличается от их движения в потенциальном слое. В пограничном слое вследствие разности скоростей U 1 - U 2 частицы приходят во вращательное движение (см. Рисунок2.2).

Вращение тем интенсивнее, чем ближе к поверхности тела находится частица. Пограничный слой всегда завихрен и поэтому его называют слоем поверхностного завихрения.

Рисунок 2.2 Обтекание тела воздушным потоком - торможение потока в пограничном слое

Частицы газа из пограничного слоя уносятся потоком в область, распложенную позади обтекаемого тела, называемую спутной струей. Скорости частиц в спутной струе всегда меньше скорости внешнего потока, т.к. частицы попадают из пограничного слоя уже приторможенными.

Виды течения пограничного слоя . При небольшой скорости набегающего потока газ в пограничном слое течет спокойно в виде отдельных слоев. Такой пограничный слой называется ламинарным (Рисунок2.3,а). Пограничный слой завихрен, но движение газа упорядочено, слои не смешиваются, частицы вращаются в пределах одного и того же тонкого слоя.

Если в пограничном слое происходит энергичное перемешивание частиц в поперечном направлении и весь пограничный слой беспорядочно завихрен, такой пограничный слой называется турбулентным (Рисунок2,б).

В турбулентном пограничном слое наблюдается непрерывное перемещение струек воздуха во всех направлениях, что требует большего количества энергии. Сопротивление воздушного потока увеличивается.

а) б)


с)

Рисунок 2.3 Ламинарное и турбулентное течение

У передней части обтекаемого тела образуется ламинарный пограничный слой, которой затем переходит в турбулентный. Такой пограничный слой называется смешанным (Рисунок2.3,с).

При смешанном течении в определенной точке происходит переход пограничного слоя из ламинарного в турбулентный. Расположение ее на поверхности тела зависит от скорости струек, формы тела и его положения в воздушном потоке, а также от шероховатости поверхности. Положение точки определяется координатой Х с (Рисунок2.3,) .

У гладких крыльевых профилей точка перехода обычно лежит на расстоянии, примерно равном 35% от длины хорды.

При создании профилей крыльев конструкторы стремятся отнести эту точку как можно дальше от передней кромки,увеличивая тем самым протяженность ламинарной части пограничного слоя Для этой цели применяют специальные ламиниризированные профили, а также увеличивают гладкость поверхности крыла и ряд других мероприятий.

Отрыв пограничного слоя . При обтекании тела с криволинейной поверхностью давление и скорости в разных точках поверхности будут неодинаковыми (Рисунок 2.4).При движении потока от точки А к точке Б происходит диффузорное расширение потока.

А Б

Рисунок 2.4 Течение в пограничном слое вблизи точки отрыва

Поэтому давление растет а скорость уменьшается, так как у самой поверхности тела скорости частиц очень малы, под влиянием разности давлений между точками А и В на этом участке происходит движение газа в обратном направлении. При этом внешний поток продолжает двигаться вперед.

Из-за обратного течения газа внешний поток оттесняется от поверхности тела. Пограничный слой набухает и отрывается от поверхности тела. Точка на поверхности тела, в которой происходит отрыв пограничного слоя, называется точкой отрыва .

Отрыв пограничного слоя приводит к образованию вихрей за телом. Положение точки отрыва зависит от характера течения в пограничном слое. При турбулентном течении место отрыва потока лежит значительно дальше по потоку, чем при ламинарном. Вихревая область за телом в этом случае значительно меньше. Это парадоксальное явление объясняется тем, что при турбулентном движении происходит более интенсивное поперечное перемешивание частиц.

Отрыв пограничного слоя наблюдается при обтекании криволинейных поверхностей, например профиля крыла на больших углах атаки. Явление это очень опасно, т.к. приводит к резкому уменьшению подъемной силы, значительному возрастанию сопротивления движению потока, потере устойчивости и управляемости самолета, вибрациям.

Явление срыва потока зависит от формы и состояния поверхности тела, характера течения воздуха в пограничном слое. Тела, имеющие вытянутую форму с плавными очертаниями (удобообтекаемые), не подвержены срыву потока в отличие от неудобообтекаемых тел.

Срыв потока может возникнуть в результате нарушения правил эксплуатации самолета: выхода на критические углы атаки, нарушения центровки. При небрежном техническом обслуживании из-за неплотного прилегания крышек лючков, неполного закрытия створок и других причин возникают местные срывы потока. Возникают опасные вибрации частей самолета.

ТЕОРИЯ ВОЗДУШНОГО ВИНТА

Введение

Воздушный винт преобразует мощность вращения двигателя в поступательную силу тяги. Воздушный винт отбрасывает назад воздушную массу, при этом создается реактивная сила, толкающая самолёт вперёд. Тяга винта равна произведению массы воздуха на ускорение, приданное ей винтом.

Определения

Лопасть воздушного винта – это несущая поверхность, похожая на крыло самолёта. Такие определения, как хорда, кривизна профиля, относительная толщина профиля, относительное удлинение аналогичны определениям в отношении крыла самолёта.

Угол установки лопастей винта ( blade angle или pitch )

Это угол между хордой лопасти и плоскостью вращения. Угол установки уменьшается от корня лопасти к законцовке, потому что окружная скорость сечения лопасти растёт от комля к законцовке. Угол установки лопасти измеряют в сечении, расположенном в 75% от её длины, отсчитывая от комля.

Шаг винта ( geometric pitch )

Это расстояние, которое бы прошёл винт за один полный оборот, если бы двигался через воздух с углом установки лопастей. (Можно представить шаг винта как движение болта, закручивающегося по резьбе, но дальше такой аналогией мы пользоваться не будем)

Геометрическая крутка лопасти ( blade twist )

Сечения лопасти, расположенные ближе к её законцовке, за один оборот проходят больший путь. Чтобы шаг винта был одинаковый для всех сечений лопасти, угол установки сечений постепенно уменьшается от комля к законцовке.

Угол установки лопастей на многих винтах может меняться. Когда угол установки лопастей маленький, говорят, что винт на режиме малого шага (fine pitch), и когда, наоборот – на режиме большого шага (coarse pitch).

Поступь винта (effective pitch или advance per revolution)

В полёте, винт не проходит расстояние, равное шагу винта, за один оборот. Реальное расстояние, проходимое винтом, зависит от скорости самолёта и называется поступью винта.

Скольжение винта ( slip )

Разница между шагом и поступью винта называется скольжением винта.

Угол наклона винтовой линии ( helix angle )

Это угол между реальной траекторией сечения воздушного винта и плоскостью вращения.

Угол атаки(α)

Траектория движения сечения лопасти в воздухе определяет направление набегающего потока воздуха. Угол между хордой сечения лопасти и направлением набегающего потока является углом атаки сечения лопасти. На угол атаки влияет окружная скорость сечения (скорость вращения винта) и истинная скорость самолёта.

Воздушный винт фиксированного шага ( fixed pitch propeller )

На рисунках показана работа воздушного винта фиксированного шага при изменении условий полёта. Увеличение истинной скорости самолёта при неизменной скорости вращения винта (окружной скорости сечения) уменьшает угол атаки винта. Увеличение скорости вращения винта на постоянной истинной скорости полёта увеличивает угол атаки винта.

Аэродинамические силы, возникающие на воздушном винте

Лопасть винта представляет собой несущую поверхность, похожую на крыло самолёта. Когда она движется через воздух на некотором угле атаки, то на ней создаются аэродинамические силы так же, как и на крыле. Между поверхностями лопасти возникает перепад давления. Та поверхность лопасти, где создаётся большее давление, называется рабочей поверхностью лопасти (pressure face или thrust face). Когда винт создаёт прямую тягу, то рабочей является задняя (плоская) поверхность лопасти. Перепад давлений создаёт полную аэродинамическую силу, которую можно разложить на две составляющие, тягу и силу сопротивления вращению.

Тяга воздушного винта

Тяга - это компонент полной аэродинамической силы, перпендикулярный плоскости вращения. Сила тяги неравномерно создаётся по длине лопасти. Она минимальна на законцовке лопасти, где перепад давления между поверхностями исчезает, также уменьшается в комле из-за малой окружной скорости. Тяга создаёт изгибающий момент на каждой лопасти, стремясь погнуть их законцовками вперёд. (Сила равная и противоположная по направлению тяге винта отбрасывает воздух назад.)

Момент сопротивления вращению

Сила сопротивления вращению винта на плече от оси вращения до точки приложения полной аэродинамической силы создаёт момент сопротивления вращению. Равный по величине и противоположный по направлению момент воздействует на самолёт, стремясь повернуть его относительно продольной оси. Также момент сопротивления вращению создаёт изгибающие моменты на лопастях воздушного винта, стремясь согнуть их против направления вращения.

Центробежный скручивающий момент лопасти ( centrifugal twisting moment )

Боковые составляющие центробежных сил «А» и «В» создают момент относительно оси изменения угла установки лопасти, стремясь уменьшить шаг винта.

Аэродинамический скручивающий момент лопасти ( aerodynamic twisting moment )

Поскольку центр давления расположен впереди оси изменения угла установки лопасти, то полная аэродинамическая сила создаёт момент, стремящийся увеличить шаг винта.

Аэродинамический момент противодействует центробежному скручивающему моменту, но слабее его.

Коэффициент полезного действия воздушного винта

Коэффициент полезного действия винта определяется отношением тяговой мощности и мощности, подведённой к винту от двигателя. Тяговая мощность винта определяется произведением тяги винта на истинную скорость самолёта, а мощность двигателя – произведением крутящего момента двигателя на угловую скорость вращения винта.

к. п. д. винта = тяговая мощность / мощность двигателя

Зависимость к. п. д. винта от скорости полёта

Выше было показано, что при увеличении скорости полёта угол атаки лопастей винта фиксированного шага уменьшается. Это приводит к уменьшению тяги винта. На некоторой скорости этот угол уменьшится настолько, что тяга винта уменьшится до нуля. Это значит, что к. п. д. винта тоже станет равным нулю.

Для воздушного винта фиксированного шага существует только одна скорость при которой лопасти будут обтекаться под наиболее выгодным углом атаки и к. п. д. винта будет максимальным. (при постоянной угловой скорости вращения)

При дальнейшем уменьшении скорости самолёта угол атаки лопастей увеличивается. Тяга винта увеличивается, но произведение тяги на скорость (тяговая мощность) начинают падать. На нулевой скорости тяга винта максимальна, но винт не производит полезной работы, поэтому его к. п. д. снова равен нулю.

Коэффициент полезного действия винта фиксированного шага сильно изменяется при изменении скорости полёта.

Как видно из рисунка, используя винт изменяемого шага (угла установки лопастей), можно добиться его эффективной работы в широком диапазоне скоростей полёта.

Винт фиксированного шага с возможностью изменения угла установки лопастей в ступице при обслуживании на земле.

Воздушный винт с возможностью выбора трёх фиксированных углов установки лопастей в полёте. Малый шаг винта устанавливается для взлёта, набора высоты и посадки. При крейсерском полёте винт устанавливается в положение большого шага. При отказе двигателя винт устанавливается во флюгерное положение.

Воздушный винт изменяемого шага (constant speed propellers).

На современных самолётах устанавливаются винты, которые автоматически выдерживают заданную частоту вращения, изменяя угол установки лопастей. Это позволяет сохранять высокий к. п. д. в широком диапазоне скоростей, улучшить характеристики взлёта и набора высоты и обеспечить экономию топлива в крейсерском полёте.

Воздушный винт изменяемого шага

На рисунке изображен типичный пульт управления винтом и двигателем на маленьких поршневых самолётах. Все рычаги находятся в положении для взлёта (крайнем переднем).

Регулятор скорости вращения винта настроен на максимальную скорость.

Перемещение среднего рычага назад приведёт к уменьшению скорости вращения винта.

Обратите внимание: Можно провести аналогию между рычагом управления скоростью вращения винта и рычагом коробки передач в автомобиле.

Максимальная скорость винта – первая передача в машине.

Минимальная скорость винта – пятая передача в машине.

На рисунке показаны условия работы воздушного винта в начале разбега по ВПП. Обороты винта максимальны, поступательная скорость мала. Угол атаки лопастей оптимален, винт работает с максимальным к. п. д. По мере роста скорости угол атаки лопастей будет уменьшаться. Это приведет к уменьшению тяги и силы сопротивления вращению. При постоянной мощности двигателя обороты двигателя начнут возрастать. Регулятор поддержания постоянной скорости вращения винта начнёт увеличивать угол установки лопастей винта, чтобы не допустить увеличения оборотов винта. Таким образом, угол атаки лопастей всё время будет удерживаться на оптимальных значениях.

На рисунке показаны условия работы винта при полёте на большой скорости. По мере роста истинной скорости полёта регулятор поддержания оборотов винта постоянно увеличивает угол установки лопастей, поддерживая постоянный угол атаки.

Рисунок показывает работу винта в крейсерском полёте. Оптимальные режимы мощности и скорости вращения винта указываются в руководстве по лётной эксплуатации. Обычно рекомендуется сначала уменьшить мощность двигателя, а затем уменьшить скорость вращения винта.

В течение всего полёта регулятор поддержания постоянных оборотов управляет углом установки лопастей винта, чтобы сохранить заданные обороты. По крайней мере, пытается этого достичь.

Если крутящий момент от двигателя пропадает (режим малого газа или отказ), то регулятор, стремясь поддержать обороты, уменьшает угол установки лопастей на минимум. Угол атаки лопастей становится отрицательным. Теперь полная аэродинамическая сила на винте направлена в противоположную сторону. Её можно разложить на отрицательную тягу винта и силу, стремящуюся раскрутить винт. Теперь воздушный винт будет крутить двигатель.

На двухмоторном самолёте при отказе одного двигателя, если винт отказавшего двигателя авторотирует, то очень сильно ухудшаются характеристики набора высоты, дальность полёта и затрудняется управление самолётом из-за дополнительного разворачивающего момента. Также вращение отказавшего двигателя может привести к его заклинению или пожару.

Флюгирование

При повороте лопастей винта на угол атаки нулевой подъёмной силы исчезает сила вращающая винт и винт останавливается. Лобовое сопротивление (отрицательная тяга) винта уменьшается до минимума. Это значительно повышает характеристики набора высоты (при отказе одного из двух двигателей), поскольку градиент набора высоты зависит от разности между тягой двигателей и лобовым сопротивлением.

Также флюгирование лопастей винта уменьшает разворачивающий момент от отказавшего двигателя. Это улучшает управляемость самолёта и понижает минимальную эволютивную скорость при отказе двигателя V MC .

На однодвигательных самолётах флюгирование винта не предусматривается. Тем не менее, при отказе двигателя существует возможность существенно уменьшить отрицательную тягу винта. Для этого регулятор скорости вращения винта переводят на минимальную скорость. При этом винт будет установлен в положение максимального шага.

Это позволяет увеличить аэродинамическое качество самолёта, что уменьшит градиент потери высоты на планировании с отказавшим двигателем. Также уменьшатся обороты двигателя из-за уменьшения силы стремящейся раскрутить винт.

Если перевести регулятор оборотов винта на увеличение скорости вращения, то эффект будет противоположный.

Отбор мощности от двигателя на винт

Воздушный винт должен быть в состоянии воспринять всю мощность двигателя.

Также он должен работать с максимальным к. п. д. во всём эксплуатационном диапазоне самолёта. Критичным фактором является скорость обтекания законцовок лопастей. Если она приближается к скорости звука, то явления, связанные со сжимаемостью воздуха, приводят к уменьшению тяги и увеличению момента сопротивления вращению. Это значительно уменьшает к. п. д. винта и увеличивает его шумность.

Ограничение скорости обтекания законцовок лопастей накладывает ограничения на диаметр и угловую скорость вращения винта, а также на истинную скорость полёта.

Диаметр винта также ограничивается требованиями минимального зазора до поверхности аэродрома и фюзеляжа самолёта, а также необходимостью установить двигатель как можно ближе к фюзеляжу, чтобы уменьшить разворачивающий момент в случае его отказа. В случае если двигатель стоит далеко от продольной оси самолёта, то необходимо увеличивать вертикальное оперение, чтобы обеспечить балансировку самолёта при отказе двигателя на малой скорости. Всё вышесказанное показывает, что обеспечить, чтобы винт потреблял всю располагаемую мощность двигателя, одним только увеличением его диаметра нецелесообразно. Часто этого добиваются увеличением коэффициента заполнения воздушного винта.

Коэффициент заполнения воздушного винта ( solidity )

Это отношение фронтальной площади всех лопастей к площади ометаемой винтом.

Методы повышения коэффициента заполнения воздушного винта:

    Увеличение хорды лопастей. Это приводит к уменьшению относительного удлинения лопасти, что приводит к снижению к. п. д.

    Увеличение количества лопастей. Отбор мощности от двигателя увеличивается без увеличения скорости обтекания законцовок и уменьшения относительного удлинения лопастей. Увеличение числа лопастей более определённого количества (5 или 6) приводит к уменьшению к. п. д. винта.

Тяга винта создаётся отбрасыванием массы воздуха назад. Если чрезмерно увеличивать коэффициент заполнения воздушного винта, то будет уменьшаться масса воздуха, который может получить ускорение при прохождении через винт. Для эффективного увеличения числа лопастей используют соосные винты, вращающиеся на одной оси в противоположных направлениях.

Моменты и силы, создаваемые воздушным винтом

Винт создаёт моменты по всем трем осям самолёта. Причины возникновения этих моментов различны:

    кренящий момент реакции винта

    гироскопический момент

    спиральный момент от спутной струи

    момент, вызванный несимметричным обтеканием винта

Примечание: Большинство современных двигателей оснащено воздушными винтами вращающимися по часовой стрелке (если смотреть сзади). На некоторых двухмоторных самолётах на правый двигатель устанавливают винт, вращающийся против часовой стрелки, для устранения недостатков, связанных с появлением критического двигателя (см. главу 12).

Кренящий момент реакции винта

Поскольку винт вращается по часовой стрелке, то на самолёт действует равный по величине и противоположный по направлению момент.

При разбеге самолёта левый пневматик будет нести большую нагрузку, что создаст большее сопротивление качению. Поэтому самолёт будет иметь тенденцию к развороту влево. В полёте самолёт будет иметь тенденцию накрениться влево. Наиболее заметен этот момент будет при максимальной тяге винта и малой скорости полёта (малая эффективность рулей).

Кренящий момент реакции винта практически отсутствует у соосных винтов, вращающихся в противоположные стороны.

В оригинальном тексте написано, что у двухдвигательных самолётов с винтами, вращающимися в одну и ту же сторону, кренящий момент реакции винтов отсутствует до тех пор, пока не откажет один из двигателей. Это неверно. В теоретической механике сказано, что суммарный момент, действующий на твёрдое тело, равен алгебраической сумме моментов, лежащих в одной плоскости. То есть момент реакции винтов будет действовать на самолёт, не зависимо от количества работающих двигателей, и если все винты вращаются в одну и ту же сторону, то моменты будут складываться.

Гироскопический момент

Вращающийся воздушный винт имеет свойства гироскопа – стремится сохранить положение оси вращения в пространстве, а в случае приложения внешней силы – появляется гироскопический момент, стремящийся развернуть ось гироскопа в направлении, отличающемся на 90° от направления вынужденного вращения.

Направление действия гироскопического момента удобно определить, воспользовавшись следующим мнемоническим правилом. Представьте себя сидящим в кабине самолёта. Плоскость вращения двигателя (винта) изобразим окружностью, а направление вращения – стрелками по окружности.

Если из центра окружности провести одну стрелку в направлении движения носа самолёта, то вторая стрелка, направленная по касательной к окружности в направлении вращения двигателя (винта), покажет направление дополнительного (прецессионного) движения носа самолёта, вызванного действием гироскопического момента двигателя (винта).

Гироскопический момент появляется только при вращении самолёта по тангажу и по курсу.

У соосных винтов гироскопический момент отсутствует.

Спиральный момент от спутной струи

Воздушный винт отбрасывает назад закрученную струю воздуха, которая вращаясь вокруг фюзеляжа, изменяет обтекание киля. Поскольку винт вращается по часовой стрелке, то струя обтекает киль под углом слева, вызывая на нем боковую силу вправо.

Спиральный момент от спутной струи винта создаёт момент рыскания влево. Величина момента зависит от режима работы двигателя и оборотов воздушного винта.

Уменьшить спиральный момент можно с помощью:

    используя соосные винты

    установкой фиксированного компенсатора на руль направления

    установкой двигателя с небольшим отворотом оси винта вправо

    установкой киля под небольшим углом влево

Момент, вызванный несимметричным обтеканием винта

В полёте ось винта отклонена от направления набегающего потока на угол атаки. Это приводит к тому, что опускающаяся лопасть обтекается под большим углом атаки, чем поднимающаяся. Правая часть воздушного винта будет создавать большую тягу, чем левая. Таким образом, будет создаваться момент рыскания влево.

Наибольшую величину этот момент будет иметь на максимальном режиме работы двигателя и максимальном угле атаки.

Влияние атмосферных условий

Изменения в атмосферном давлении и/или температуре приводят к изменению плотности воздуха.

Это влияет на:

    мощность двигателя при неизменном положении дроссельной заслонки

    момент сопротивления вращению винта.

Увеличение плотности воздуха приводит к увеличению обоих этих параметров, но мощность двигателя увеличивается в большей степени.

Влияние плотности воздуха на работу двигателя с винтом фиксированного шага

Увеличение плотности приводит к росту оборотов винта и наоборот.

Влияние плотности воздуха на момент сопротивления вращению (потребный крутящий момент двигателя) винта фиксированного шага

Увеличение плотности приводит к росту момента сопротивления вращению винта и наоборот.

Воздушный винт является важнейшей составной частью силовой установки, и от того, насколько он сответствует двигателю и летательному аппарату зависят летно-технические качества последнего.

Помимо выбора геометрических параметров воздушного винта внимания заслуживает вопрос о согласовании чисел оборотов винта и двигателя, то есть подбор редуктора.

Принцип работы воздушного винта

Лопасть винта совершает сложное движение - поступательное и вращательное. Скорость движения элемента лопасти будет складываться из окружной скорости и поступательной (скорости полета) - V

В любом сечении лопасти составляющая скорости V будет неизменной, а окружная скорость будет зависеть от величины радиуса, на котором находится рассматриваемое сечение.

Следовательно с уменьшением радиуса угол подхода струи к сечению увеличивается, а угол атаки сечения уменьшается и может стать равным нулю или отрицательным. Между тем известно, что крыло наиболее эффективно "работает" на углах атаки, близких к углам максимального аэродинамического качества. Поэтому для того, чтобы заставить лопасть создавать наибольшую тягу при наименьшей затрате энергии, угол должен быть переменным по радиусу: меньшим на конце лопасти и большим вблизи оси вращения - лопасть должна быть скручена.

Закон распространения толщин профиля и крутки по радиусу винта, а также форма винтового профиля определяется в процессе проектирования винта и уточняется впоследствии на основании продувки в аэродинамических трубах. Подобные исследования проводятся как правило в специализированных конструкторских бюро или институтах, оснащенных современным оборудованием и средствами вычислительной техники. Опытно-конструкторские бюро, а также самодеятельные конструкторы обычно пользуются уже разработанными семействами винтов, геометрические и аэродинамические характеристики которых представляются в форме безразмерных коэффициентов.

Основные характеристики

Диаметром винта - D называется диаметр окружности, которую описывают концы его лопасти во время вращения.

Ширина лопасти -это хорда сечения на заданном радиусе. В расчетах обычно используют относительную ширину лопасти

Толщиной лопасти на каком либо радиусе называется наибольшая толщина сечения на этом радиусе. Толшина изменяется вдоль радиуса лопасти, уменьшаясь от центра винта к его концу. Под относительной толщиной понимают отношение абсолютной толщины к ширине лопасти на том же радиусе: .

Углом установки сечения лопасти называется угол, образованный хордой данного сечения с плоскостью вращения винта.

Шагом сечения лопасти H называется расстояние, которое пройдет это сечение в осевом направлении при повороте винта на один оборот вокруг своей оси, ввинчиваясь в воздух как в твердое тело.

Шаг и угол установки сечения связаны очевидным соотношением:

Реальные воздушные винты имеют шаг, изменяющийся вдоль радиуса по определенному закону. В качестве характерного угла установки лопасти принимается, как правило, угол установки сечения, расположенного на 0,75R от оси вращения винта, обозначаемый как .

Круткой лопасти называется изменение по радиусу углов между хордой сечения на данном радиусе и хордой на радиусе 0,75R, то есть

Для удобства пользования все перечисленные геометрические характеристики обычно представляют графически в функции относительно текущего радиуса винта

В качестве примера на следующем рисунке приведены данные, описывающие геометрию двухлопастного винта фиксированного шага:

Если винт, вращаясь с числом оборотов движется поступательно со скоростью V то за один оборот он пройдет путь . Эта величина называется поступью винта, а ее отношение к диаметру называется относительной поступью винта:

Аэродинамические свойства винтов принято характеризовать безразмерным коэффициентом тяги:

Коэффициентом мощности

И коэффициентом полезного действия

Где р - плотность воздуха, в расчетах может быть принята равной 0,125 кгс с 2 /м 4

Угловая скорость вращения винта об/с

D - диаметр винта, м

P и N - соответственно тяга и мощность на валу винта, кгс, л. с.

Теоретический предел тяги винта

Для конструктора СЛА представляет интерес возможность без расчетов делать приближенные оценки тяги, создаваемой силовой установкой. Эта задача достаточно просто решается с помощью теории идеального пропеллера, согласно которой тяга винта представляется функцией трех параметров: мощности двигателя, диаметра винта и скорости полета. Практика показала, что тяга рационально выполненных реальных винтов всего на 15 - 25% ниже предельных теоретических значений.

Результаты расчетов по теории идеального пропеллера показаны на следующем графике, который позволяет поределить отношение тяги к мощности в зависимости от скорости полета и параметра N/D 2 . Видно, что при околонулевых скоростях тяга в сильной степени зависит от диаметра винта, однако уже на скоростях опрядка 100 км/ч указанная зависимость менее существенна. Кроме того, график дает наглядное представление о неизбежности уменьшения тяги винта по скорости полета, что необходимо учитывать при оценке летных данных СЛА.

по материалам:
"Руководство для конструкторов летательных аппаратов самодеятельной постройки", Том 1, СибНИИА