Факты о числах. Так ли проста их история? Кто придумал простые числа сообщение

Введение

Простое число -- это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа, бомльшие единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел.

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа -- элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа.

Из истории простых чисел

Греческий математик Эратосфен, живший более чем за 2000 лет до н.э., составил первую таблицу простых чисел. Эратосфен родился в городе Кирене, получил образование в Александрии под руководством Каллимаха и Лисания, в Афинах слушал философов Аристона Хиосского и Аркесилая, тесно сблизился со школой Платона. В 246г. до.н.э., после смерти Каллимаха, царь Птолемей Эвергет вызвал Эратосфена из Афин и поручил ему заведовать Александрийской библиотекой. Эратосфен работал во многих областях науки: филология, грамматика, история, литература, математика, хронология, астрономия, география и музыка.

Для отыскания простых чисел Эратосфен придумал такой способ. Он записал все числа от 1 до какого-то числа, а потом вычеркнул единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные 2, т.е. 4,6,8, и т.д.) . Первым оставшимся числом после 2 был 3. Далее вычеркивались все числа кратные 3, т.е. 6,9,12, и т.д. В конце концов оставались невычеркнутыми только простые числа. (рис.1)

Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных. Таким способом в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

Простые числа в природе и их использование человеком

1) Периодические цикады

Люди изменили окружающий нас мир, построили невероятные города, и разработали впечатляющие технологии, которые привели к появлению современного мира. Спрятанный под внешней оболочкой планеты, где мы живем, невидимый мир состоит из чисел, последовательностей и геометрии. Математика - это код, который придает смысл всей вселенной.

В лесах Теннеси этим летом часть кода, о котором идет речь, в прямом смысле слова выросла прямо из земли. Каждые 13 лет примерно на 6 недель хор насекомых очаровывает всех, кто становится свидетелем этого редкого природного явления. Выживание этих цикад, которых можно найти только в восточных регионах северной Америки, зависит от странных свойств некоторых из самых фундаментальных чисел в математике - простых чисел, чисел, делящихся только на самих себя и других.

Цикады появляются здесь периодически, но их появление всегда происходит в те года, числа которых состоят из простых чисел. В случае с выводком, который появился вокруг Нэшвилле в этом году, то с момента их прошлого появления прошло 13 лет. Выбор 13-детнего цикла не кажется случайным. В разных частях северной Америки есть еще два выводка, жизненный цикл которых также составляет 13 лет. Они возникают в разных регионах и в разные года, но между появлениями этих живых существ проходит ровно 13 лет. Вдобавок, существует еще 12 выводков насекомых, которые появляются через каждые 17 лет.

Вы можете принять эти числа за совершенно случайные. Но это очень любопытно, что не существует цикад с циклом жизни, равным 12, 14, 15, 16 или 18 лет. Однако, посмотрите на этих цикад глазами математика и картина начинает проясняться. Потому, что числа 13 и 17 оба являются неделимыми, это дает цикадам эволюционные преимущества между другими животными, циклы жизни которых являются периодическими, а не простыми числами. Возьмем, к примеру, хищника, который появляется в лесах каждые шесть лет. Тогда восьми- или девятилетние циклы жизни цикад будут совпадать с циклами жизни хищников, в то время как семилетние циклы жизни будут совпадать с циклом жизни хищника намного реже.

Эти насекомые вмешались в математический код, чтобы выжить.

2) Криптография

Цикады обнаружили пользу использования простых чисел для своего выживания, однако люди поняли, что эти числа являются не только ключом к выживанию, но и огромным количеством строительного материала в математике. Каждое число, по сути, представляет собой совокупность простых чисел, а совокупность чисел составляет математику, а из математики вы получите целый научный мир.

Простые числа находят спрятанными в природе, но человечество научилось их использовать.

Понимание фундаментального характера этих чисел и использование их свойств людьми, в буквальном смысле поставило их в основу всех кодов, которых охраняют мировые кибер-секреты.

Криптография, благодаря которой наши кредитные карточки остаются в безопасности, когда мы покупаем что-нибудь онлайн, использует те же числа, которые защищают цикад в Северной Америке - простые числа. Каждый раз, когда вы вводите номер своей кредитной карты на вебсайте, вы полагаетесь на то, что простые числа сохранят ваши тайны и информацию о вас в секрете. Для кодирования вашей кредитной карты ваш компьютер получает публичный номер Н с вебсайта, который и будет использоваться для совершения операций с вашей кредитной картой.

Это перемешивает ваши данные так, что закодированное письмо может быть послано через интернет. Вебсайт использует простые числа, на которые делят число Н, чтобы раскодировать послание. Хотя Н является открытым числом, простые числа, из которых оно состоит, являются секретными ключами, которые расшифровывают данные. Причиной, по которой такое кодирование является настолько безопасным, является то, что очень легко перемножить простые числа между собой, но разложить число на простые практически невозможно.

3) Загадки простых чисел

Простые числа являются атомами арифметики, гидрогеном и оксигеном мира чисел. Но вопреки их фундаментальному характеру, они также являют собой одну из самых больших загадок математики. Потому что, проходя по вселенной чисел практически невозможно предсказать, где вы встретите следующее простое число.

Мы знаем, что количество простых чисел уходит в бесконечность, но поиск закономерности появления простых чисел является самой большой загадкой математики. Приз в миллион долларов обещан тому, кто сможет раскрыть тайну этих чисел. Загадка о том, когда первый раз цикады начали пользоваться простыми числами, чтобы выжить является такой же сложной, как и сама загадка простых чисел.

Простые числа - «капризны». Таблицы простых чисел обнаруживают большие «неправильности» в распределении простых чисел

Пестрота картины распределения простых чисел увеличивается еще более, если отметить, что существуют пары простых чисел, которые отделены в натуральном ряду только одним числом («близнецы»). Например. 3 и 5, 5 и 7, 11 и 13, 10016957 и 10016959. С другой стороны, существуют пары простых чисел, между которыми много составных. Например, все 153 числа от 4652354 до 4652506 являются составными.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США.

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 ? 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 ? 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл?-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд? (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

?(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

?(n) = ? 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ? n ? 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ? n ? 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 ? 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Вы можете помочь и перевести немного средств на развитие сайта



Числа преследуют человека везде. Даже наше тело созвучно их миру - мы имеем определенное количество органов, зубов, волос и кожных клеток. Счет стал привычным, автоматическим действием, поэтому сложно представить, что когда-то люди не знали цифр. На самом деле история возникновения чисел прослеживается с самых древних времен.

Числа и первобытные люди

В какой-то момент человек ощутил большую потребность в счете. На это его

подтолкнула сама жизнь. Необходимо было каким-то образом организовывать племя, отправляя на охоту или собирательство только определенное количество человек. Поэтому для счета пользовались пальцами на руках. До сих пор есть племена, которые вместо цифры «5» показывают одну руку, а вместо десяти - две. С такого простого алгоритма счета и начала развиваться история возникновения чисел.

Простые числа

История возникновения чисел позволяет заметить, что люди довольно давно обнаружили разницу между нечетной и четной цифрой, а также различные взаимосвязи внутри самих числовых выражений. Немалый вклад в подобные
исследования внесли древние греки. Например, греческий ученый Эратосфен создал довольно легкий способ поиска простых чисел. Для этого он записывал нужное количество цифр по порядку, а потом начинал вычеркивать - сначала все числа, которые можно делить на два, потом - на три. В результате получался список цифр, которые ни на что не делятся, кроме единицы и себя самого. Этот метод был назван «решето Эратосфена» из-за того, что греки не вычеркивали, а выкалывали ненужные числа на табличках, покрытых воском.

Таким образом, история возникновения чисел - явление древнее и глубинное. По оценкам ученых, оно началось еще около 30 тысяч лет назад. За это время в жизни человека успело поменяться многое. Но и по сей день руководит нашим бытием.

Простые числа - это целые числа больше единицы, которые не могут быть представлены как произведение двух меньших чисел. Таким образом, 6 - это не простое число, так как оно может быть представлено как произведение 2×3, а 5 - это простое число, потому что единственный способ представить его как произведение двух чисел - это 1×5 или 5×1. Если у вас есть несколько монет, но вы не можете расположить их все в форме прямоугольника, а можете только выстроить их в прямую линию, ваше число монет - это простое число.

Бесконечное число простых чисел

Некоторые считают, что простые числа не стоят глубокого изучения, но они имеют фундаментальное значение для математики. Каждое число может быть представлено уникальным способом в виде простых чисел, умноженных друг на друга. Это значит, что простые числа - это «атомы умножения», маленькие частички, из которых может быть построено что-то большое.

Так как простые числа - это строительные элементы целых чисел, которые получаются с помощью умножения, многие проблемы целых чисел могут быть сведены к проблемам простых чисел. Подобным образом некоторые задачи в химии могут быть решены с помощью атомного состава химических элементов, вовлеченных в систему. Таким образом, если бы существовало конечное число простых чисел, можно было бы просто проверить одно за другим на компьютере. Однако оказывается, что существует бесконечное множество простых чисел, которые на данный момент плохо понимают математики.

Греческий математик Евклид доказал, что существует бесконечное множество простых чисел. Если у вас есть определенное количество простых чисел, например p1,… pn, вы можете рассмотреть число p1×…×pn + 1, которое на единицу больше, чем все простые числа, умноженные друг на друга. Это число не может быть произведением любых чисел p1,… pn из вашего списка, но оно точно больше, чем 1. Так что все простые множители должны быть простыми числами, которых нет в вашем списке. Добавляя новые простые числа в ваш список и повторяя те же действия, вы всегда можете найти по крайней мере одно новое простое число. Поэтому должно существовать бесконечное множество простых чисел.

История изучений

Никто точно не знает, в каком обществе стали впервые рассматривать простые числа. Их изучают так давно, что у ученых нет записей тех времен. Есть предположения, что некоторые ранние цивилизации имели какое-то понимание простых чисел, но первым реальным доказательством этого являются египетские записи на папирусах, сделанные более 3500 лет назад.

Древние греки, скорее всего, были первыми, кто изучал простые числа как предмет научного интереса, и они считали, что простые числа важны для чисто абстрактной математики. Теорему Евклида по-прежнему изучают в школах, несмотря на то что ей уже больше 2000 лет.

После греков серьезное внимание простым числам снова уделили в XVII веке. С тех пор многие известные математики внесли важный вклад в наше понимание простых чисел. Пьер де Ферма совершил множество открытий и известен благодаря Великой теореме Ферма, 350-летней проблеме, связанной с простыми числами и решенной Эндрю Уайлсом в 1994 году. Леонард Эйлер доказал много теорем в XVIII веке, а в XIX веке большой прорыв был сделан благодаря Карлу Фридриху Гауссу, Пафнутию Чебышёву и Бернхарду Риману, особенно в отношении распределения простых чисел. Кульминацией всего этого стала до сих пор не решенная гипотеза Римана, которую часто называют важнейшей нерешенной задачей всей математики. Гипотеза Римана позволяет очень точно предсказать появление простых чисел, а также отчасти объясняет, почему они так трудно даются математикам.

Практические применения

У простых чисел существует огромное количество применений как в области математики, так и за ее пределами. Простые числа в наши дни используются практически ежедневно, хотя чаще всего люди об этом не подозревают. Простые числа представляют такое значение для ученых, поскольку они являются атомами умножения. Множество абстрактных проблем, касающихся умножения, можно было бы решить, если бы люди знали больше о простых числах. Математики часто разбивают одну проблему на несколько маленьких, и простые числа могли бы помочь в этом, если бы понимали их лучше.

Вне математики основные способы применения простых чисел связаны с компьютерами. Компьютеры хранят все данные в виде последовательности нулей и единиц, которая может быть выражена целым числом. Многие компьютерные программы перемножают числа, привязанные к данным. Это означает, что под самой поверхностью лежат простые числа. Когда человек совершает любые онлайн-покупки, он пользуется тем, что есть способы умножения чисел, которые сложно расшифровать хакеру, но легко покупателю. Это работает за счет того, что простые числа не имеют особенных характеристик - в противном случае злоумышленник мог бы получить данные банковской карты.

Поиск новых простых чисел

Один из способов нахождения простых чисел - это компьютерный поиск. Путем многократной проверки того, является ли число множителем 2, 3, 4 и так далее, можно легко определить, простое ли оно. Если оно не является множителем любого меньшего числа, оно простое. В действительности это очень трудоемкий способ выяснения того, является ли число простым. Однако существуют более эффективные пути это определить. Эффективность этих алгоритмов для каждого числа является результатом теоретического прорыва 2002 года.

Простых чисел достаточно много, поэтому если взять большое число и прибавить к нему единицу, то можно наткнуться на простое число. В действительности многие компьютерные программы полагаются на то, что простые числа не слишком трудно найти. Это значит, что, если вы наугад выберете число из 100 знаков, ваш компьютер найдет большее простое число за несколько секунд. Поскольку 100-значных простых чисел больше, чем атомов во Вселенной, то вполне вероятно, что никто не будет знать наверняка, что это число простое.

Как правило, математики не ищут отдельных простых чисел на компьютере, однако они очень заинтересованы в простых числах с особыми свойствами. Есть две известные проблемы: существует ли бесконечное количество простых чисел, которые на один больше, чем квадрат (например, это имеет значение в теории групп), и существует ли бесконечное количество пар простых чисел, отличающихся друг от друга на 2.

Тайны простых чисел

Несмотря на то, что простые числа изучаются уже более трех тысячелетий и имеют простое описание, о простых числах до сих пор известно на удивление мало. Например, математики знают, что единственной парой простых чисел, отличающихся на единицу, являются 2 и 3. Однако неизвестно, существует ли бесконечное количество пар простых чисел, отличающихся на 2. Предполагается, что существует, но это пока не доказано. Это проблема, которую можно объяснить ребенку школьного возраста, однако величайшие математические умы ломают над ней голову уже более 100 лет.

Многие из наиболее интересных вопросов о простых числах как с практической, так и с теоретической точки зрения заключаются в том, какое количество простых чисел имеет то или иное свойство. Ответ на самый простой вопрос - сколько есть простых чисел определенного размера - теоретически можно получить, решив гипотезу Римана. Дополнительный стимул доказать гипотезу Римана - приз размером в один миллион долларов, предложенный математическим институтом Клэя, равно как и почетное место среди самых выдающихся математиков всех времен.

Сейчас существуют неплохие способы предположить, каким будет правильный ответ на многие из этих вопросов. На данный момент догадки математиков проходят все численные эксперименты, и есть теоретические основания, чтобы на них полагаться. Однако для чистой математики и работы компьютерных алгоритмов чрезвычайно важно, чтобы эти догадки действительно были верными. Математики могут быть полностью удовлетворены, только имея неоспоримое доказательство.

Самым серьезным вызовом для практического применения является сложность нахождения всех простых множителей числа. Если взять число 15, можно быстро определить, что 15=5×3. Но если взять 1000-значное число, вычисление всех его простых множителей займет больше миллиарда лет даже у самого мощного суперкомпьютера в мире. Интернет-безопасность во многом зависит от сложности таких вычислений, потому для безопасности коммуникации важно знать, что кто-то не может просто взять и придумать быстрый способ найти простые множители.

Современные исследования

Несмотря на то, что эта тема стара и затрагивала многих известных математиков на протяжении всей истории, она по-прежнему актуальна. Ученые не знают, существует ли бесконечное количество пар таких простых чисел, как 3 и 5, отличающихся на 2. Это известная нерешенная проблема. Математик Итан Чжан сделал большой прорыв в отношении этой проблемы. В начале 2013 года ученые не знали, существует ли бесконечное количество пар простых чисел в пределах 1 квинтиллиона друг от друга или для любого числа, помимо 1 квинтиллиона, независимо от его величины. Благодаря теоретическим наработкам, основанным на работе Чжана, математики знают, что существует бесконечное количество простых чисел, отличающихся друг от друга не больше чем на 246. Число 246 гораздо больше двух, однако оно заметно меньше бесконечности.

Вместо того чтобы искать простые числа, находящиеся рядом, можно искать те из них, что находятся далеко друг от друга на числовой оси. Заметный теоретический прорыв в этой проблеме был сделан впервые за более чем 75 лет в начале 2014 года, когда исследователи из Математического института Оксфорда решили одну из проблем Эрдёша. Другие два интересных решения проблем Эрдёша, связанных с простыми числами, были сделаны Бобом Хафом и Теренсом Тао, чья работа была основана на еще одном прорыве, сделанном Каисой Матомаки и Максимом Раджвиллом в 2014 году. Харальд Гельфготт с Дэвидом Платтом наконец доказали слабую гипотезу Гольдбаха, доведя до кульминации сто лет различных находок. Математики привыкли к тому, что нужно ждать десять лет до достижения серьезного результата в области простых чисел, однако на этот раз получили полдюжины таких результатов за последние три года.

Простые числа в будущем

Сейчас невозможно сказать, как простые числа будут использоваться в будущем. Чистая математика (например, изучение простых чисел) неоднократно находила способы применения, которые могли показаться совершенно невероятными, когда теория впервые разрабатывалась. Снова и снова идеи, воспринимавшиеся как чудной академический интерес, непригодный в реальном мире, оказывались на удивление полезными для науки и техники. Годфри Харольд Харди, известный математик начала XX столетия, утверждал, что простые числа не имеют реального применения. Сорок лет спустя был открыт потенциал простых чисел для компьютерной коммуникации, и сейчас они жизненно необходимы для повседневного использования интернета.

Поскольку простые числа лежат в основе проблем, касающихся целых чисел, а целые числа постоянно встречаются в реальной жизни, простым числам найдется повсеместное применение в мире будущего. Это особенно актуально, учитывая, как интернет проникает в жизнь, а технологии и компьютеры играют большую роль, чем когда-либо раньше.

Существует мнение, что определенные аспекты теории чисел и простых чисел выходят далеко за рамки науки и компьютеров. В музыке простые числа объясняют, почему некоторые сложные ритмические рисунки долго повторяются. Это порой используется в современной классической музыке для достижения специфического звукового эффекта. Последовательность Фибоначчи постоянно встречается в природе, и есть гипотеза о том, что цикады эволюционировали таким образом, чтобы находиться в спячке в течение простого числа лет для получения эволюционного преимущества. Также предполагается, что передача простых чисел по радиоволнам была бы лучшим способом для попытки установления связи с инопланетными формами жизни, поскольку простые числа абсолютно независимы от любого представления о языке, но при этом достаточно сложны, чтобы их нельзя было спутать с результатом некоего в чистом виде физического природного процесса.

Разложение натуральных чисел в произведение простых

Алгоритмы поиска и распознавания простых чисел

Простые способы нахождения начального списка простых чисел вплоть до некоторого значения дают Решето Эратосфена , решето Сундарама и решето Аткина .

Однако, на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты . Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера - Рабина) и используются для нужд криптографии . В 2002 году было доказано, что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный тест Агравала - Каяла - Саксены имеет довольно большую вычислительную сложность , что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты (см. ниже).

Бесконечность множества простых чисел

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах » (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор. Противоречие .

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма величин, обратных к первым n простым числам, неограниченно растёт с ростом n .

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты : теста Люка - Лемера . Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США . Ранее EFF уже присуждала призы за нахождение простых чисел из 1 000 000 и 10 000 000 десятичных цифр.

Простые числа специального вида

Существует ряд чисел, простота которых может быть установлена эффективно с использованием специализированных алгоритмов.

С использованием теста Бриллхарта-Лемера-Селфриджа (англ. ) может быть проверена простота следующих чисел:

Для поиска простых чисел обозначенных типов в настоящее время используются проекты распределенных вычислений GIMPS , PrimeGrid , Ramsey@Home, Seventeen or Bust , Riesel Sieve, Wieferich@Home.

Некоторые свойства

  • Если - простое, и делит , то делит или . Доказательство этого факта было дано Евклидом и известно как лемма Евклида . Оно используется в доказательстве основной теоремы арифметики .
  • Кольцо вычетов является полем тогда и только тогда, когда - простое.
  • Характеристика каждого поля - это ноль или простое число.
  • Если - простое, а - натуральное, то делится на (малая теорема Ферма).
  • Если - конечная группа с элементов, то содержит элемент порядка .
  • Если - конечная группа, и - максимальная степень , которая делит , то имеет подгруппу порядка , называемую силовской подгруппой , более того, количество силовских подгрупп равно для некоторого целого (теоремы Силова).
  • Натуральное является простым тогда и только тогда, когда делится на (теорема Вильсона).
  • Если - натуральное, то существует простое , такое, что (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида , где - целые взаимно простые числа , содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде или , где - некоторое натуральное число. Отсюда, если разность между несколькими последовательными простыми числами (при k>1) одинакова, то она обязательно кратна 6 - например: 251-257-263-269; 199-211-223; 20183-20201-20219.
  • Если - простое, то кратно 24 (справедливо также для всех нечётных чисел, не делящихся на 3) .
  • Теорема Грина-Тао. Существуют сколь угодно длинные конечные арифметические прогрессии, состоящие из простых чисел .
  • n >2, k >1. Иначе говоря, число, следующее за простым, не может быть квадратом или более высокой степенью с основанием, бо́льшим 2. Из этого следует также, что если простое число имеет вид , то k - простое (см. числа Мерсенна).
  • Никакое простое число не может иметь вид , где n >1, k >0. Иначе говоря, число, предшествующее простому, не может быть кубом или более высокой нечётной степенью с основанием, бо́льшим 1 .

содержащий 26 переменных и имеющий степень 25. Наименьшая степень для известных многочленов такого типа - 5 при 42 переменных; наименьшее число переменных - 10 при степени около 15905. Этот результат является частным случаем доказанной Юрием Матиясевичем диофантовости любого перечислимого множества .

Открытые вопросы

Распределение простых чисел p n = f s n ); Δs n = p n +1 ² - p n ². Δp n = p n +1 - p n ; Δp n = 2, 4, 6, … .

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе :

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи , числа Ферма и т. д.

Приложения

Вариации и обобщения

  • В теории колец , разделе абстрактной алгебры , определено понятие простого элемента и простого идеала .
  • В теории узлов определено понятие простого узла (англ. ), как нетривиального узла , который не может быть представлен в виде связной суммы нетривиальных узлов.

См. также

Примечания

Литература

  • Гальперин Г. «Просто о простых числах» // Квант . - № 4. - С. 9-14,38.
  • Нестеренко Ю. В. Алгоритмические проблемы теории чисел // Введение в криптографию / Под редакцией В. В. Ященко. - Питер, 2001. - 288 с. - ISBN 5-318-00443-1
  • Василенко О. Н. Теоретико-числовые алгоритмы в криптографии . - М .: МЦНМО , 2003. - 328 с. - ISBN 5-94057-103-4
  • Черемушкин А. В. . - М .: МЦНМО , 2002. - 104 с. - ISBN 5-94057-060-7
  • Кноп К. «В погоне за простотой»
  • Кордемский Б. А. Математическая смекалка . - М .: ГИФМЛ, 1958. - 576 с.
  • Генри С. Уоррен, мл. Глава 16. Формулы для простых чисел // Алгоритмические трюки для программистов = Hacker"s Delight. - М .: «Вильямс», 2007. - 288 с. - ISBN 0-201-91465-4
  • Ю. Матиясевич. Формулы для простых чисел // Квант . - 1975. - № 5. - С. 5-13.
  • Н. Карпушина. Палиндромы и «перевёртыши» среди простых чисел // Наука и жизнь . - 2010. - № 5.
  • Д. Цагер. Первые 50 миллионов простых чисел // Успехи математических наук . - 1984. - Т. 39. - № 6(240). - С. 175–190.

Ссылки

  • The Prime Pages (англ.) - база данных наибольших известных простых чисел
  • PrimeGrid prime lists - все простые числа, найденные в рамках проекта PrimeGrid
  • Геометрия простых и совершенных чисел (исп.)